SISTEM PERANCANGAN ESTIMASI PENJUALAN EMAS MENGGUNAKAN METODE MOVING AVERAGE DAN METODE EXTREME STUDENTIZED DEVIATE

Sugiarto Leo, Dyah Erni Herwindiati, Manatap Dolok Lauro

Abstract


Every sale must have problem. For example, in recording transactions at stores that are not neat and structured, not knowing how much expenses and income at the store or predicting gold sales in the future. “Happy” Gold Shop is one of the shops that sell gold and solve this problem. Based on the above problems, it is necessary to make a gold sales estimation design application using the moving average method and the extreme studentized deviate method. The application is not only able to predict heavy sales but can record transaction data on each sale and purchase making it easier for owners to get sales data in a structured manner. The extreme studentized method is used to eliminate outlier values that are considered to deviate from the average value of a data. After correcting the outlier data, the data from the process will be used to predict sales in the form of daily estimates. Accuracy is based on an assessment of the MAD comparison using a period of two to five. The test results are based on the smallest MAD value for necklaces, bracelets and anklets with a period of 3,2,2 with a value of 11.47, 11.90 and 2.42

Keywords


Extreme Studentized Deviate, Moving Average, Penjualan Emas, Prediksi.

Full Text:

PDF

References


Muchlisin Riadi, Pengertian, Fungsi dan Jenis-Jenis Peramalan(Forecasting), https://www.kajianpustaka.com/2017/11/pengertian-fungsi-dan-jenis-peramalan forecasting.html, 19 Febuari 2020..

Boris Iglewicz, David C. Hoaglin, How to Detect and Handle Outliers (California: ASQC Quality Press, 1993),

Influxdata, what is time series data?, https://www.influxdata.com/what-is-time-series-data/, 7 maret 2021

Douglas C. Montgomery, Cheryl L. Jennings, and Murat Kulahci, Introduction to Time Series Analysis and Forecasting, (Hoboken: John Wiley & Sons. Inc, 2008), h. 1.

Siti Wardah, dan Iskandar. “Analisis Peramalan Penjualan Produk Keripik Pisang Kemasan Bungkus”, Jurnal Teknik Industri, Vol. XI, Nomor 3, (September, 2016), h. 136.

Hartati. “Penggunaan Metode Arima Dalam Meramal Pergerakan Inflasi”, Jurnal Matematika, Saint dan Teknologi, Vol. XVIII, Nomor 1, (Maret, 2017), h. 2

John E. Hanke, Dean Wichern, Business Forecasting, 9th Edition (Harlow: Pearson / Prentice Hall, 2009) ,

DocPlayer, Pengertian data outlier Data outlier yaitu data dengan kombinasi unik dari karakteristik yang dapat diidentifikasi sebagai sesuatu yang berbeda. https://docplayer.info/63271137-2-pengertian-data-outlier-data-outlier-yaitu-data-dengan-kombinasi-unik-dari-karakteristik-yang-dapat-diidentifikasi-sebagai-sesuatu-yang-berbeda.html, 3 Maret 2021

Agil Saputro, dan Bambang Purwanggono. “Peramalan Perencanaan Produksi Semen Dengan Metode Exponential Smoothing Pada PT. Semen indonesia”, Jurnal Industrial Engineering Online, Vol. V, Nomor 4, (November,2016).




DOI: http://dx.doi.org/10.24912/jiksi.v9i2.13108

Refbacks

  • There are currently no refbacks.