APLIKASI CLUSTERING BERITA DENGAN METODE K MEANS DAN PERINGKAS BERITA DENGAN METODE MAXIMUM MARGINAL RELEVANCE

Edy Susanto, Viny Christanti Mawardi, Manatap Dolok Lauro

Abstract


News is information about facts or opinions that are interesting to know. News can be obtained from various media such as newspapers and the internet. As is well known, news has various topics, such as politics, sports and others. There is also the same story written with the addition of a little information. This causes it to take more time to get the headline of the news. Therefore we need a system for news clustering using the K-Means method and news summarizing using the Maximum Marginal Relevance (MMR) method in order to obtain information from news more easily and efficiently. News that is processed in the form of a collection of files (multi document) with the extension txt. The summarization process goes through the text preprocessing stage, which consists of sentence segmentation, case folding, tokenizing, filtering, stemming. The next step is TF-IDF calculation to calculate word weight then Cosine Similarity to calculate the similarity between documents. After that, enter the K-Means stage for clustering division and proceed with determining the summary with MMR. Based on the results testing that has been done, this application is running well, the results of clustering and summarizing news can make it easier for users to get news summaries from some similar news.


Keywords


Berita, Clustering, K-Means, Maximum Marginal Relevance, Peringkasan teks.

Full Text:

PDF

References


Rofiqi, Ach. Yasir. “CLUSTERING BERITA OLAHRAGA BERBAHASA INDONESIA MENGGUNAKAN METODE K-MEDOID BERSYARAT”. Jurnal Simantec. Vol. VI, Nomor 1. Jawa Timur: Universitas Trunojoyo Madura, Juni 2017.

Sukma Sindi; R. O. N. Weni; Sihombing, Irma Agustika; P.P.P.A.N.W. Fikrul Ilmi R.H.Zer; dan Hartama, Dedy. “ANALISIS ALGORITMA K-MEDOIDS CLUSTERING DALAM PENGELOMPOKAN PENYEBARAN COVID-19 DI INDONESIA”. Jurnal Teknologi Informasi. Vol. IV, Nomor 1. Pematangsiantar: STIKOM Tunas Bangsa Pematangsiantar, 2020.

Hudin, Muhammad Sholeh; Fauzi ,M Ali; dan Adinugroho, Sigit. “Implementasi Metode Text Mining dan K-Means Clustering untuk Pengelompokan Dokumen Skripsi (Studi Kasus: Universitas Brawijaya)”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. II, Nomor 11. November 2018.

Saraswati, Nirmala Fa’izah; Indriati; dan Perdana, Rizal Setya; “Peringkasan Teks Otomatis Menggunakan Metode Maximum Marginal Relevance Pada Hasil Pencarian Sistem Temu Kembali Informasi Untuk Artikel Berbahasa Indonesia”. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer. Vol. II, Nomor 11. Jawa Timur: Fakultas Ilmu Komputer Universitas Brawijaya. November 2018.

Husni; D. P. N. Yudha; dan M. Syarief. “Clusterisasi Dokumen Web (Berita) Bahasa Indonesia Menggunakan Algoritma K-Means”. Jurnal SimanteC. Vol. IV, Nomor 3. Madura: Fakultas Teknik Universitas Trunojoyo, Juni 2015.

Kodinariya, Trupti M. and Dr. Prashant R. Makwana. “Review on deTermining number of Cluster in K-Means Clustering”. International Journal of Advance Research in Computer Science and Management Studies. Vol. I, Nomor 6. November 2013.


Refbacks

  • There are currently no refbacks.