PREDIKSI PASIEN KANKER PARU-PARU MENGGUNAKAN METODE K-NEAREST NEIGHBORS, DECISION TREE, DAN NAIVE BAYES

Main Article Content

Yosia Amadeus Ishak
Manatap Dolok Lauro

Abstract

This research aims to determine the application performance of the K-Nearest Neighbors (KNN), Decision Tree, and Naive Bayes methods in predicting lung cancer patients. Lung cancer is a deadly disease that is often difficult to detect in its early stages. Therefore, the development of accurate and efficient prediction models has a significant impact in early diagnosis and improving patient survival rates. This research yields a deeper understanding of the performance of these methods in the context of lung cancer prediction. The dataset used includes information such as age, gender, and other medical history of the lung cancer patients observed. Experimental results show that Decision Tree has the highest accuracy, followed by KNN and Naive Bayes. However, these three methods provide valuable contributions in the context of lung cancer prediction. These findings can be a basis for further development in the field of cancer diagnosis and provide valuable insights for medical practitioners and researchers in efforts to improve the effectiveness of early lung cancer detection.

Article Details

Section
Articles

References

I. Buana and D. Agustian Harahap, “ASBESTOS, RADON DAN POLUSI UDARA SEBAGAI FAKTOR RESIKO KANKER PARU PADA PEREMPUAN BUKAN PEROKOK,” Aceh, May 2022.

[2] S. Sugiharto, R. A. P. S. Simanjuntak, and O. Larissa, “KANKER PARU, FAKTOR RISIKO DAN PENCEGAHANNYA,” Seminar Nasional Hasil Penelitian dan Pengabdian Kepada Masyarakat 2021 Pengembangan Ekonomi Bangsa Melalui Inovasi Digital Hasil Penelitian dan Pengabdian Kepada Masyarakat Jakarta, Oct. 2021.

[3] N. Handayani, “Kanker dan Serba-Serbinya (Hari Kanker Sedunia 2022),” https://rsprespira.jogjaprov.go.id/kanker-dan-serba-serbinya-hari-kanker-sedunia-2022/.

[4] J. Joseph and L. W. A. Rotty, “Kanker Paru: Laporan Kasus,” Medical Scope Journal, vol. 2, no. 1, Jul. 2020, doi: 10.35790/msj.2.1.2020.31108.

[5] S. S. Bhusare, V. Yatnalli, S. G. Patil, S. Kumar, N. R. Havinal, and C. S. Subhash, “Machine Learning and Digital Image Processing in Lung Cancer Detection,” pp. 56–67, May 2023, doi: 10.1007/978-3-031-31164-2_6.

[6] D. B. Laraswati, “Mengenal K-nearest Neighbor dan Pengaplikasiannya,” https://blog.algorit.ma/k-nearest-neighbor/.

[7] A. M. Alfatah, R. Arifudin, and A. Muslim, “Implementation of Decision Tree and Dempster Shafer on Expert System for Lung Disease Diagnosis,” Scientific Journal of Informatics, vol. 5, no. 1, pp. 2407–7658, May 2018, [Online]. Available: http://journal.unnes.ac.id/nju/index.php/sji

[8] A. Saleh, “Implementasi Metode Klasifikasi Naïve Bayes Dalam Memprediksi Besarnya Penggunaan Listrik Rumah Tangga,” Citec Journal, vol. 2, no. 3, May 2015.

[9] T. Devastator, “Lung Cancer Prediction,” https://www.kaggle.com/datasets/thedevastator/cancer-patients-and-air-pollution-a-new-link.

[10] A. Adam, “Data Preprocessing: Pengertian, Manfaat, dan Tahapan Kerjanya,” https://accurate.id/teknologi/data-preprocessing/.

[11] A. N. Fariza, “Data Cleaning Adalah: Pengertian, Urgensi, Manfaat, dan 3 Contohnya,” https://www.sekawanmedia.co.id/blog/data-cleaning/.

[12] F. Effendy and P. Studi, “Klasifikasi Rumah Tangga Miskin Menggunakan Ordinal Class Classifier,” Jurnal Nasional Teknologi dan Sistem Informasi, vol. 4, no. 1, 2018, doi: 10.25077/TEKNOSI.v4i1.2018.009-020.

[13] F. F. Firdaus, H. A. Nugroho, and I. Soesanti, “A Review of Feature Selection and Classification Approaches for Heart Disease Prediction,” IJITEE, vol. 4, no. 3, Sep. 2020.

[14] D. Fusvita and F. Hari Utami, “Penerapan Algoritma KNN (K-Nearest Neighbour) Dalam Klasifikasi Data Pinjaman Anggota Koperasi,” Jurnal Ilmiah Binary STMIK Bina Nusantara Jaya, vol. 3, no. 1, 2021.

[15] Cahya, “Contoh implementasi Data Mining Algoritma k-Nearest Neighbors (k-NN) menggunakan PHP dan MySQL untuk memprediksi kelulusan mahasiswa tepat waktu,” https://extra.cahyadsn.com/knn.

[16] D. Feby, “Apa Itu Decision Tree di Machine Learning Model?,” https://dqlab.id/apa-itu-decision-tree-di-machine-learning-model.

[17] I. Khoeri and D. I. Mulyana, “Implementasi Machine Learning dengan Decision Tree Algoritma C4.5 dalam Penerimaan Karyawan Baru pada PT. Gitareksa Dinamika Jakarta,” Jurnal Sosial dan Teknologi (SOSTECH), vol. 1, no. 7, Jul. 2021, [Online]. Available: http://sostech.greenvest.co.id

[18] A. C. Dewi, “Klasifikasi menggunakan Algoritma Decision Tree,” https://agneschintiadewi.medium.com/klasifikasi-menggunakan-algoritma-decision-tree-446d500ba73c.

[19] Syarli and A. A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” Jurnal Ilmiah Ilmu Komputer, vol. 2, no. 1, Apr. 2016, [Online]. Available: http://ejournal.fikom-unasman.ac.id

[20] A. Desiani, M. Akbar, I. Irmeilyana, and A. Amran, “Implementasi Algoritma Naïve Bayes dan Support Vector Machine (SVM) Pada Klasifikasi Penyakit Kardiovaskular,” Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 4, no. 2, pp. 207–214, Aug. 2022, doi: 10.32528/elkom.v4i2.7691.