PERBANDINGAN KINERJA METODE PEMBELAJARAN MESIN UNTUK ANALISIS SENTIMEN ULASAN FILM

Main Article Content

Eugene Vincent Arends

Abstract

Analisis dari sentimen dapat membantu pembuat film dan studio membentuk strategi marketing, menilai kualitas film, analisis kompetisi, dan menganalisa tren yang lebih luas dalam industri film. Sentimen analisis ini dilakukan pada 50.000 ulasan film di IMDB dan menggunakan metode K-Nearest Neighbor, Naïve Bayes, dan Random Forest untuk mengklasifikasi positif atau negatifnya sentiment sebuah ulasan. Ulasan dalam format teks diubah menjadi representasi vector dengan menggunakan TF-IDF (term frequency–inverse document frequency) vectorizer. K-Nearest Neighbor (K-NN) menghasilkan akurasi terbaik 74%, Naïve Bayes (NB) menghasilkan akurasi 85%, dan Random Forest (RF) menghasilkan akurasi 85%. Naïve Bayes dan Random Forest mendapatkan hasil dengan akurasi terbaik. Naïve Bayes memprediksi ulasan negatif yang lebih akurat, sedangkan Random Forest memprediksi ulasan positif yang lebih akurat.

Article Details

Section
Articles

References

[1] M. S. Basarslan and F. Kayaalp, "Sentiment Analysis with Machine Learning Methods on Social Media," ADCAIJ: Advances in Distributed Computing and Artificial Intelligence Journal, vol. 9, no. 3, pp. 5-15, 2020.

[2] B. Liu, Sentiment Analysis and Opinion Mining, Springer Nature, 2022.

[3] P. Nandwani and R. Verma, "A review on sentiment analysis and emotion detection from text," Social Network Analysis and Mining, vol. 11, no. 1, p. 81, 2021.

[4] K. Garcia and B. Lilian, "Topic detection and sentiment analysis in twitter content related to covid-19 from brazil and the USA," Applied Soft Computing, vol. 101, p. 107057, 2021.

[5] M. Singh, A. K. Jakhar and S. Pandey, "Sentiment analysis on the impact of coronavirus in social life using the BERT model," Social Network Analysis and Mining, vol. 11, no. 1, p. 33, 2021.

[6] G. Barkur, V. and G. B. Kamath, "Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: Evidence from India," Asian Journal of Psychiatry, vol. 51, p. 102089, 2020.

[7] K. H. Manguri, R. N. Ramadhan and P. R. M. Amin, "Twitter sentiment analysis on worldwide COVID-19 outbreaks," Kurdistan Journal of Applied Research, pp. 54-65, 2020.

[8] T. T. Sasidhar, B. Premjit and S. K. Padannayil, "Emotion detection in hinglish (hindi+ english) code-mixed social media text.," Procedia Computer Science, vol. 171, pp. 1346-1352, 2020.

[9] J. Zhou and J.-m. Ye, "Sentiment analysis in education research: a review of journal publications," Interactive learning environments, vol. 31, no. 3, pp. 1252-1264, 2023.

[10] L. Yue, W. Chen, X. Li, W. Zuo and M. Yin, "A survey of sentiment analysis in social media," Knowledge and Information Systems, vol. 60, p. 617–663, 2019.

[11] L. Yang, Y. Li, J. Wang and R. S. Sherratt, "Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning," IEEE Access, vol. 9, pp. 23522-23530, 2020.

[12] R. S. Jagdale, V. S. Shirsat and S. N. Deshmukh, "Sentiment analysis on product reviews using machine learning techniques," in Cognitive Informatics and Soft Computing: Proceeding of CISC 2017, Springer, 2019, pp. 639-647.

[13] H. M. Ahmed, M. J. Awan, N. S. Khan, A. Yasin and H. M. Faisal Shehzad, "Sentiment analysis of online food reviews using big data analytics," Elementary Education Online, vol. 20, no. 2, pp. 827-836, 2021.

[14] H. Yuan, Y. Tang, W. Sun and L. Liu, "A detection method for android application security based on TF-IDF and machine learning," PLoS ONE, vol. 15, no. 9, p. e0238694, 2020.

[15] D. E. Cahyani and I. Patasik, "Performance comparison of TF-IDF and Word2Vec models for emotion text classification," Performance comparison of TF-IDF and Word2Vec models for, vol. 10, no. 5, pp. 2790-2788, 2021.

[16] M. Das, P. Alphonse and S. Kamalanathan, "A Comparative Study on TF-IDF feature Weighting Method and its Analysis," arXiv preprint arXiv, p. 2308.04037, 2023.

[17] A. Mee, E. Homapour, F. Chiclana and O. Engel, "Sentiment Analysis using TF-IDF Weighting of UK MPs’ Tweets on Brexit," Knowledge-Based System, vol. 228, p. 107238, 2021.

[18] E. Y. Boateng, J. Otoo and D. A. Abaye, "Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review," Journal of Data Analysis and Information Processing, vol. 8, no. 4, pp. 341-357, 2020.

[19] M. K. Mahinda, L. Pasi and C. Mikael, "A new fuzzy k-nearest neighbor classifier based on the Bonferroni mean," Pattern Recognition Letters, vol. 140, pp. 172-178, 2020.

[20] I. Wikramansinghe and H. Kalutarage, "Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation," Soft Computing, vol. 25, no. 3, pp. 2277-2293, 2021.

[21] M. M. Saritas and A. Yasar, "Performance Analysis of ANN and Naive Bayes Classification Algorithm for Data Classification," International Journal of Intelligent Systems and Applications in Engineering, vol. 7, no. 2, pp. 88-91, 2019.

[22] M. Artur, "Review the performance of the Bernoulli Naïve Bayes Classifier in Intrusion Detection Systems using Recursive Feature Elimination with Cross-validated selection of the best number of features," Procedia Computer Science, vol. 190, pp. 564-570, 2021.