PERBANDINGAN KINERJA ALGORITMA EXTREME GRADIENT BOOSTING DAN RANDOM FOREST UNTUK PREDIKSI HARGA RUMAH DI JABODETABEK
Main Article Content
Abstract
The demand for housing continues to increase along with population growth. Predicting house prices is crucial to assist prospective buyers and investors in making more informed decisions. This study aims to predict house prices in the Jabodetabek area by comparing the performance of two machine learning algorithms, namely Extreme Gradient Boosting and Random Forest, to produce accurate price estimates. The prediction process includes data preprocessing, key variable exploration, and model evaluation using metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and R-squared (R²). The results show that the Random Forest model performs best, with an MAE of 95,200,513.25, an MSE of 1.47e+19, and an R² of 0.77, outperforming the Extreme Gradient Boosting model with an MAE of 121,836,703.27, an MSE of 3.03e+19, and an R² of 0.52. Thus, this research is expected to serve as an effective tool for stakeholders in mitigating risks in property investment decisions in the Jabodetabek area.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] E. D. Viana, F. Febrianti, and F. R. Dewi, “Literasi Keuangan, Inklusi Keuangan dan Minat Investasi Generasi Z di Jabodetabek,” Jurnal Manajemen dan Organisasi, vol. 12, no. 3, pp. 252–264, Jan. 2022.
[2] Permata, Nike Dyah, “Evaluasi Fungsi Pemanfaatan Hutan Kota Sebagai Kawasan Rekreasi Masyarakat Jabodetabek,” Ipb.ac.id, 2019.
[3] F. Febyanti, “Pemodelan Faktor-Faktor yang Mempengaruhi Harga Rumah di Jabodetabek Menggunakan Metode Regresi Probit,” Jurnal Riset Statistika, pp. 50–56, Jul. 2022.
[4] R. M. Sanusi, A. Siswo, and R. Wijaya, “Prediksi Harga Rumah Di Kota Bandung Bagian Timur Dengan Menggunakan Metode Regresi,” eProceedings of Engineering, vol. 7, no. 3, 2020, Accessed: Oct. 31, 2024. [Online].
[5] Ummi Athiyah, Arnelka Hananta, Taufik Maulidi, Vico, T. Felix, and E. Angeline, “Sistem Pendukung Keputusan Prediksi Harga Rumah Kost untuk Mahasiswa IT Telkom Purwokerto Menggunakan Metode Fuzzy Tsukamoto Berbasis Web,” Journal of Dinda Data Science Information Technology and Data Analytics, vol. 1, no. 2, pp. 77–81, Aug. 2021.
[6] Cep Haryanto, Nining Rahaningsih, and Fadhil Muhammad Basysyar, “KOMPARASI ALGORITMA MACHINE LEARNING DALAM MEMPREDIKSI HARGA RUMAH,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 1, pp. 533–539, Mar. 2023.
[7] N. Nuris, “Analisis Prediksi Harga Rumah Pada Machine Learning Metode Regresi Linear,” Explore, vol. 14, no. 2, pp. 108–112, Jul. 2024.
[8] Sutisna Sutisna and Mirsandi Nazar Yuniar, “Klasifikasi Kualitas Air Bersih Menggunakan Metode Naïve baiyes,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 243–246, 2023.
[9] Rasiban Rasiban, S. Bila, and Triwahyudi Triwahyudi, “Pemilihan Rute Terbaik Dari Lokasi Calon Pelanggan Ke Terminal Akses Menggunakan Metode A*Star PT. Bahtera Anugrah Electical,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 331–335, 2023.
[10] H. Tao et al., “Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting,” Complexity, vol. 2020, pp. 1–22, Oct. 2020.
[11] Hadirat Halawa, Okta Jaya Harmaja, Wicarda sandi Hulu, and seriani Loi, “Implementasi Algoritma K-Means Clustering Untuk Pengelompokkan Penyakit Pasien Pada Puskesmas Pulo Brayan,” Jurnal Sains dan Teknologi, vol. 5, no. 1, pp. 150–157, 2023, Accessed: Oct. 31, 2024.
[12] “IMPLEMENTASI DATA MINING UNTUK MEMPREDIKSI MEMBER BARU MENGGUNAKAN LINEAR REGRESSION PADA PT. GSI,” Jurnal Tekinkom (Teknik Informasi dan Komputer), vol. 6, no. 1, pp. 118–126, 2023.
[13] S. Usman, “Predictive Sparepart Maintenance Menggunakan Algoritma Machine Learning Extreme Gradiant Boosting Regressor,” Journal of System and Computer Engineering (JSCE), vol. 5, no. 2, pp. 249–258, Jul. 2024.
[14] T. Chen and C. Guestrin, “XGBoost: a Scalable Tree Boosting System,” Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD ’16, vol. 13–17, pp. 785–794, 2016.
[15] W. Li, Y. Yin, X. Quan, and H. Zhang, “Gene Expression Value Prediction Based on XGBoost Algorithm,” Frontiers in Genetics, vol. 10, Nov. 2019,
[16] T. M. Khalil and Sahid Sahid, “Klasifikasi informasi hoaks pada media sosial twitter menggunakan algoritma random forest berbasis particle swarm optimization,” Jurnal Kajian dan Terapan Matematika, vol. 8, no. 3, pp. 199–209, 2022, Accessed: Oct. 31, 2024. [Online].