PREDIKSI HARGA PANGAN JAYAPURA MENGGUNAKAN ELM, LSTM, LIGHTGBM, DAN GB
Main Article Content
Abstract
Ketahanan pangan di wilayah Indonesia Timur menghadapi tantangan dari aspek geografis, fluktuasi harga, dan keterbatasan pasokan. Penelitian ini bertujuan untuk membandingkan empat algoritma pembelajaran mesin, yaitu Extreme Learning Machine (ELM), Long Short-Term Memory (LSTM), LightGBM, dan Gradient Boosting dalam memprediksi harga komoditas pangan strategis di Jayapura. Dataset yang digunakan berupa data deret waktu harga harian enam komoditas pangan yang dikumpulkan dari Januari 2018 hingga April 2025. Tahapan penelitian meliputi pra-pemrosesan data, analisis eksploratif (EDA), pelatihan model, dan evaluasi performa menggunakan metrik MAE, MAPE, RMSE, R², dan waktu pelatihan. Hasil percobaan menunjukkan bahwa ELM merupakan model dengan performa terbaik secara keseluruhan dengan nilai MAE 0.21, MAPE 0.76%, RMSE 0.36, R² 0.87, serta waktu pelatihan rata-rata 4.65 detik. Model LSTM menunjukkan akurasi yang baik namun memiliki waktu pelatihan yang jauh lebih tinggi. LightGBM dan Gradient Boosting memiliki performa keseluruhan yang kurang optimal. Dengan demikian, ELM direkomendasikan sebagai model utama untuk sistem prediksi harga komoditas pangan di Jayapura yang membutuhkan kombinasi antara akurasi dan efisiensi.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] A. R. Salasa, “Paradigma dan Dimensi Strategi Ketahanan Pangan Indonesia,” Jejaring Administrasi Publik, vol. 13, no. 1, pp. 35–48, Sep. 2021, doi: 10.20473/jap.v13i1.29357.
[2] E. Indrayani et al., “PEMBERDAYAAN MASYARAKAT PESISIR MELALUI BUDIKDAMBER (BUDIDAYA IKAN DALAM EMBER) UNTUK KETAHANAN PANGAN DI KAMPUNG HOLTEKAMP, DISTRIK MUARA TAMI, KOTA JAYAPURA,” BALOBE: Jurnal Pengabdian Masyarakat, vol. 2, no. 2, pp. 29–38, Nov. 2023.
[3] Sudiro, Tommi, and R. K. Samosir, “Optimalisasi Fungsi Lahan Perkampungan Sebagai Sumber Ketahanan Pangan Nasional di Kampung Mosso, Jayapura,” Journal Scientific of Mandalika (jsm), vol. 6, no. 4, pp. 1088–1095, 2025.
[4] A. W. Murti, J. A. Mollet, and H. Hutajulu, “Analisis Pengembangan Kawasan Berbasis Komoditas Palawija pada Kota Jayapura,” Indo-Fintech Intellectuals: Journal of Economics and Business, vol. 3, no. 2, pp. 154–170, Aug. 2023, doi: 10.54373/ifijeb.v3i2.152.
[5] I. Marina, D. Sukmawati, E. Juliana, and Z. N. Safa, “Dinamika Pasar Komoditas Pangan Strategis: Analisis Fluktuasi Harga Dan Produksi,” Paspalum: Jurnal Ilmiah Pertanian, vol. 12, no. 1, p. 160, Apr. 2024, doi: 10.35138/paspalum.v12i1.700.
[6] R. P. Masini, M. C. Medeiros, and E. F. Mendes, “Machine learning advances for time series forecasting,” J Econ Surv, vol. 37, no. 1, pp. 76–111, Feb. 2023, doi: 10.1111/joes.12429.
[7] M. Rahman, F. Rashid, S. K. Roy, and Md. A. Habib, “Application of extreme learning machine (ELM) forecasting model on CO2 emission dataset of a natural gas-fired power plant in Dhaka, Bangladesh,” Data Brief, vol. 54, p. 110491, Jun. 2024, doi: 10.1016/j.dib.2024.110491.
[8] A. C. Purba, T. Handhayani, and J. Hendryli, “Comparison of Support Vector Regression (SVR) and Long Short-Term Memory (LSTM) Methods for Meteorological Data Prediction in Nusa Tenggara,” in 2025 International Conference on Computer Sciences, Engineering, and Technology Innovation (ICoCSETI), IEEE, Jan. 2025, pp. 675–680. doi: 10.1109/ICoCSETI63724.2025.11020432.
[9] T. Handhayani, I. Lewenusa, D. E. Herwindiati, and J. Hendryli, “A Comparison of LSTM and BiLSTM for Forecasting the Air Pollution Index and Meteorological Conditions in Jakarta,” in 2022 5th International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), IEEE, Dec. 2022, pp. 334–339. doi: 10.1109/ISRITI56927.2022.10053078.
[10] A. D. Hartanto, Y. Nur Kholik, and Y. Pristyanto, “Stock Price Time Series Data Forecasting Using the Light Gradient Boosting Machine (LightGBM) Model,” JOIV : International Journal on Informatics Visualization, vol. 7, no. 4, p. 2270, Dec. 2023, doi: 10.62527/joiv.7.4.1740.
[11] K. Oikonomou and D. Damigos, “Short term forecasting of base metals prices using a LightGBM and a LightGBM - ARIMA ensemble,” Mineral Economics, vol. 38, no. 1, pp. 37–49, Mar. 2025, doi: 10.1007/s13563-024-00437-y.
[12] A. Winata, M. D. Lauro, and T. Handhayani, “SISTEMASI: Jurnal Sistem Informasi Analysis and Prediction of Foodstuffs Prices in Tasikmalaya Using ELM and LSTM,” 2023. [Online]. Available: http://sistemasi.ftik.unisi.ac.id
[13] M. Oni, M. D. Lauro, A. Winata, and T. Handhayani, “Analysis And Forecasting of Foodstuffs Prices in Bandung Using Gated Recurrent Unit,” Jurnal Esensi Infokom : Jurnal Esensi Sistem Informasi dan Sistem Komputer, vol. 7, no. 2, pp. 15–21, Oct. 2023, doi: 10.55886/infokom.v7i2.651.
[14] Y. Zhang, C. Zhu, and Q. Wang, “LightGBM‐based model for metro passenger volume forecasting,” IET Intelligent Transport Systems, vol. 14, no. 13, pp. 1815–1823, Dec. 2020, doi: 10.1049/iet-its.2020.0396.
[15] “Berdasarkan Daerah - PIHPS.” Accessed: Jun. 14, 2025. [Online]. Available: https://www.bi.go.id/hargapangan/TabelHarga/PasarTradisionalDaerah
[16] S. Albahra et al., “Artificial intelligence and machine learning overview in pathology & laboratory medicine: A general review of data preprocessing and basic supervised concepts,” Semin Diagn Pathol, vol. 40, no. 2, pp. 71–87, Mar. 2023, doi: 10.1053/j.semdp.2023.02.002.
[17] A. H. Adineh, Z. Narimani, and S. C. Satapathy, “Importance of data preprocessing in time series prediction using SARIMA: A case study,” International Journal of Knowledge-based and Intelligent Engineering Systems, vol. 24, no. 4, pp. 331–342, Jan. 2021, doi: 10.3233/KES-200065.
[18] T. Emmanuel, T. Maupong, D. Mpoeleng, T. Semong, B. Mphago, and O. Tabona, “A survey on missing data in machine learning,” J Big Data, vol. 8, no. 1, p. 140, Oct. 2021, doi: 10.1186/s40537-021-00516-9.
[19] B. Deepa and K. Ramesh, “Epileptic seizure detection using deep learning through min max scaler normalization,” Int J Health Sci (Qassim), pp. 10981–10996, May 2022, doi: 10.53730/ijhs.v6nS1.7801.
[20] A. Pranolo et al., “Enhanced Multivariate Time Series Analysis Using LSTM: A Comparative Study of Min-Max and Z-Score Normalization Techniques,” ILKOM Jurnal Ilmiah, vol. 16, no. 2, pp. 210–220, Aug. 2024, doi: 10.33096/ilkom.v16i2.2333.210-220.
[21] A. Prasetya Wibawa, W. Lestar, A. Bella Putra Utama, I. Tri Saputra, and Z. Nabila Izdihar, “Multilayer Perceptron untuk Prediksi Sessions pada Sebuah Website Journal Elektronik,” Indonesian Journal of Data and Science, vol. 1, no. 3, Dec. 2020, doi: 10.33096/ijodas.v1i3.15.
[22] R. E. Wahyuni, “OPTIMASI PREDIKSI INFLASI DENGAN NEURAL NETWORK PADA TAHAP WINDOWING ADAKAH PENGARUH PERBEDAAN WINDOW SIZE,” Technologia: Jurnal Ilmiah, vol. 12, no. 3, p. 176, Jul. 2021, doi: 10.31602/tji.v12i3.5181.
[23] Y. Yang, “TCN-QV: an attention-based deep learning method for long sequence time-series forecasting of gold prices,” PLoS One, vol. 20, no. 5, p. e0319776, May 2025, doi: 10.1371/journal.pone.0319776.
[24] V. Cerqueira, L. Torgo, and I. Mozetič, “Evaluating time series forecasting models: an empirical study on performance estimation methods,” Mach Learn, vol. 109, no. 11, pp. 1997–2028, Nov. 2020, doi: 10.1007/s10994-020-05910-7.
[25] D. F. Rahman and A. Q. Munir, “Pendekatan Eksploratif dalam Analisis Data Harga Pangan Nasional dengan Tableau,” ILKOMNIKA: Journal of Computer Science and Applied Informatics, vol. 6, no. 2, pp. 53–63, Aug. 2024, doi: 10.28926/ilkomnika.v6i2.659.
[26] Ajewole KP, Adejuwon SO, and Jemilohun VG, “Test for Stationarity on Inflation Rates in Nigeria using Augmented Dickey Fuller Test and Phillips-Persons Test,” IOSR Journal of Mathematics, vol. 16, no. 3, pp. 11–14, 2020, doi: 10.9790/5728-1603031114.
[27] M. K. Alim and D. B. Arianto, “ANALISIS KORELASI ANTARA FAKTOR EKONOMI DAN DISTRIBUSI PENDUDUK DI JAWA TIMUR TAHUN 2020 MENGGUNAKAN METODE KORELASI PEARSON,” Kohesi: Jurnal Multidisiplin Saintek, vol. 1, no. 4, pp. 20–30, 2023.
[28] M. Heru Widiyanto, R. Mayasari, and G. Garno, “IMPLEMENTASI TIME SERIES PADA DATA PENJUALAN DI GAIKINDO MENGGUNAKAN ALGORITMA SEASONAL ARIMA,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 3, pp. 1501–1506, Oct. 2023, doi: 10.36040/jati.v7i3.6879.
[29] A. Dokumentov and R. J. Hyndman, “STR: Seasonal-Trend Decomposition Using Regression,” INFORMS Journal on Data Science, vol. 1, no. 1, pp. 50–62, Apr. 2022, doi: 10.1287/ijds.2021.0004.
[30] K. Kireyna Cindy Pradhisa and R. Yotenka, “Penerapan Metode Extreme Learning Machine (ELM) untuk Meramalkan Produksi Air Minum dan Air yang Dijual di Kota Yogyakarta Tahun 2023,” Emerging Statistics and Data Science Journal, vol. 2, no. 2, pp. 258–263, Jun. 2024, doi: 10.20885/esds.vol2.iss.2.art19.
[31] J. Cahyani, S. Mujahidin, and T. P. Fiqar, “Implementasi Metode Long Short Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 2, p. 346, Jul. 2023, doi: 10.26418/justin.v11i2.57395.
[32] N. Selle, N. Yudistira, and C. Dewi, “Perbandingan Prediksi Penggunaan Listrik dengan Menggunakan Metode Long Short Term Memory (LSTM) dan Recurrent Neural Network (RNN),” Jurnal Teknologi Informasi dan Ilmu Komputer, vol. 9, no. 1, pp. 155–162, Feb. 2022, doi: 10.25126/jtiik.2022915585.
[33] Y. Wang et al., “Short-Term Load Forecasting for Industrial Customers Based on TCN-LightGBM,” IEEE Transactions on Power Systems, vol. 36, no. 3, pp. 1984–1997, May 2021, doi: 10.1109/TPWRS.2020.3028133.
[34] Y. Wang and T. Wang, “Application of Improved LightGBM Model in Blood Glucose Prediction,” Applied Sciences, vol. 10, no. 9, p. 3227, May 2020, doi: 10.3390/app10093227.
[35] U. Singh, M. Rizwan, M. Alaraj, and I. Alsaidan, “A Machine Learning-Based Gradient Boosting Regression Approach for Wind Power Production Forecasting: A Step towards Smart Grid Environments,” Energies (Basel), vol. 14, no. 16, p. 5196, Aug. 2021, doi: 10.3390/en14165196.
[36] M. B. - and Dr. B. B. -, “A Comprehensive Review of Cross-Validation Techniques in Machine Learning,” International Journal on Science and Technology, vol. 16, no. 1, Jan. 2025, doi: 10.71097/IJSAT.v16.i1.1305.
[37] K. Albeladi, B. Zafar, and A. Mueen, “Time Series Forecasting using LSTM and ARIMA,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 1, 2023, doi: 10.14569/IJACSA.2023.0140133.