KLASTERISASI SENTIMEN ULASAN PENGGUNA APLIKASI BCA MOBILE PADA PLATFORM GOOGLE PLAY STORE DENGAN ALGORITMA K-MEANS CLUSTERING
Main Article Content
Abstract
Financial banking app is increasingly becomes part of daily lifestyle. From survey conducted by Top Brand Index showed one of the most popular banking app is BCA Mobile. This study was conducted to analyze BCA Mobile app user feedback from App reviews in google play store platform. The data is collected using scrapping method with google-play-scrapper library in python. Using K-Means Clustering algorithm to analyze 662 reviews in 26 December 2022 until 30 December 2022 time period. The clustering process is supported by Term Frequency-Inverse Document Frequency weighting method to help calculate the importance of a word in a set of document. This clustering process produces ten cluster, with silhouette score of 0.1027277 and average star rating of 2.65.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
Dewi, I. R. (2022, June 9). Data Terbaru! Berapa Pengguna internet Indonesia 2022?. CNBC Indonesia. Diakses 1 September 2022, dari https://www.cnbcindonesia.com/tech/20220609153306-37-345740/data-terbaru-berapa-pengguna-internet-indonesia-2022
Consumer preference towards banking and E-Wallet Apps. Populix. (2022, July 28). Diakses 28 August 2022, dari https://info.populix.co/report/digital-banking-survey/
Annur, C. M. (2022, June 22). Aplikasi Mobile banking terpopuler di Indonesia, Siapa Juaranya?. Databoks. Diakses 28 September 2022, dari https://databoks.katadata.co.id/datapublish/2022/06/22/aplikasi-mobile-banking-terpopuler-di-indonesia-siapa-juaranya
Liu B. (2015). Sentiment Analysis : Mining Opinions, Sentiments, and Emotions. New York, NY : Cambridge University Press.
Safitri, S. I., Suhery, C., & Bahri, S. IMPLEMENTASI ALGORITMA K–MEANS UNTUK CLUSTERING SENTIMEN PADA OPINI KUALITAS PELAYANAN JASA PENERBANGAN. Coding Jurnal Komputer dan Aplikasi, 9(02).
Saputra, Try & Arianty, Rini. (2019). IMPLEMENTASI ALGORITMA K-MEANS CLUSTERING PADA ANALISIS SENTIMEN KELUHAN PENGGUNA INDOSAT. Jurnal Ilmiah Informatika Komputer. 24. 191-198. 10.35760/ik.2019.v24i3.2361.
Liu, B. (2012). Sentiment analysis and opinion mining. San Rafael: Morgan & Claypool Publishers
Feldman, R., & Sanger, J. (2007). The text mining handbook: Advanced approaches in analyzing unstructured data. Cambridge: Cambridge University Press.
Zafikri, A. 2008. Implementasi Metode Term Frequency Inverse Document Frequency (Tf-Idf) pada Sistem Temu Kembali Informasi. Universitas Sumatera Utara, (Online), (http://repository.usu.ac.id/handle/123456789/ 16465), diakses 21 Mei 2017.
Ghosh, S., & Dubey, S.K. (2013). Comparative Analysis of K-Means and Fuzzy C- Means Algorithms. International Journal of Advanced Computer Science and Applications, 4.
Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics. Vol.20, pp.53-65.
Abtohi, S. 2017. Implementasi Teknik Web Scraping dan Klasifikasi Sentimen Menggunakan Metode Support Vector Machine dan Asosiasi. Skripsi. Program Studi Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam UII Yogyakarta.