REKOMENDASI LOKASI WISATA KULINER DI JAKARTA MENGGUNAKAN METODE K-MEANS CLUSTERING DAN SIMPLE ADDITIVE WEIGHTING

Angga Saputra, Bagus Mulyawan, Tri Sutrisno

Abstract


Jakarta as the center of the capital city of Indonesia which has culinary attractions that are of interest to visitors from international restaurants to the best traditional Indonesian restaurants. Both are presented with the feel of an elegant colonial building up to a modern nuanced room.Therefore, the K-Means clustering method and Simple Additive Weighting (SAW) are combined to select and classify the data needed in the ranking list of culinary tourism locations in Jakarta that are in accordance with the user's wishes or according to the user's initial location. K-Means Clustering is a method that groups data according to each cluster.Simple Additive Weighting (SAW) is the method used for the ranking process with use preference values. In this study, the K-Means Clustering method will divide the location travel according to distance calculated from the user's initial position to the address of the tourist location, then the SAW method willsort which location best suits the user's wishes. The test results show that the K-Means Clustering and Simple Additive Weighting (SAW) method can buy recommendations on culinary tourism locations with the best ranking from each cluster based on the weight of each criterion and the maximum radius input by the user

Keywords


Culinary Tourism; K-Means Clustering; Location; Simple Additive Weighting

Full Text:

PDF

References


Definisi. Pengertian Wisata Menurut Para Ahli.http://www.definisimenurutparaahli.com/pengertian-wisata/, 6 Februari 2018.

Indonesia, Kamus Besar Bahasa. Arti Kata Objek Wisata kuliner Menurut KBBI. http://kbbi.kata.web.id/objek-wisata/, 6 Juli 2018.

Tempatwisataunik, info wisata kuliner. https://tempatwisataunik.com/info-wisata/wisata-kuliner/kelebihan-wisata-kuliner, 8 september 2018

Indonesia, Kamus Besar Bahasa. Arti Kata Objek Wisata kuliner Menurut KBBI. http://kbbi.kata.web.id/objek-wisata/,6 Juli 2018.

Hengky, Aditya. Sistem Pengambilan Keputusan dengan Algoritma SAW (Simple Additive Weighting). https://medium.com/@aditya_33768/sistem-pengambilan-keputusan-dengan-algoritma-saw-simple-additive-weighting-524a43ef316,7 Agustus 2018.

Agusta,Yudi.K-means-Penerapan, permasalahan dan metode terkait, 25 agustus 2018.

Badriyah,Tessy. Cluster Analysis, http://lecturer.eepisits.edu/iwantif/kuliah/dm/5clustering.pdf, 25 agustus 2018.

Fitriana,Noor. Perbandingan Kinerja Metode Lingkungan, MetodeAverage Lingkage, dan metode K-means Dalam Menentukan hasil analisis cluster. Jogyakarta: UNY, 2014.

Eniyati, Sri. Perancangan Sistem Pendukung Pengambilan Keputusan untuk Penerimaan Beasiswa dengan Metode SAW (Simple Additive Weighting). Jurnal Teknologi Informasi DINAMIK. Vol. XVI, Nomor 2. Semarang: Universitas Stikubank, 11 Juli 2011.

Faizin, Agus dan Mulyanto, Edy. Peneerapan Metode Simple Additive Weighting (SAW) untuk Seleksi TenagaKerja Baru Bagian Produksi (Studi Kasus pada PT. Jesi Jason Surja WIbowo, Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas Dian Nuswantoro Semarang, 2016.


Refbacks

  • There are currently no refbacks.