ANALISIS SENTIMEN TERHADAP WACANA KEBIJAKAN SUBSIDI KRL BERBASIS NIK MENGGUNAKAN ALGORITMA NAIVE BAYES
Main Article Content
Abstract
Kereta Rel Listrik (KRL) is a public transportation that uses rail-based electric power. Although KRL is the main choice of many people because of its efficiency, it has various challenges to face, especially regarding the discourse on the NIK-based KRL subsidy policy. This can be seen from various comments from KRL users on social media that contain comments on the policy discourse. Based on the Financial Memorandum Book document of the Draft State Budget (APBN) 2025, the general KRL fee subsidy will be changed based on the population's Family Identification Number (NIK). As a result, the KRL fee will change from Rp3,000 for the first 25km to approximately Rp25,000 for the first 25km. Complaints and grievances of people today tend to prefer to share posts (uploads) in the form of stories of their daily life through social media. One of the social media that is often used to argue is X (Twitter). One topic that is often discussed is public transportation, usually shared through social media posts or quotes as a form of service user satisfaction. To improve the quality of KRL services, it is necessary to know the level of satisfaction of KRL public transportation users in Indonesia. Sentiment analysis is used in this research to determine the sentiment of KRL service user comments in Indonesia. The Software Development Life Cycle (SDLC) method used is the Agile method. Public sentiment is collected using X social media, and sentiment analysis stages will be carried out such as crawling, labeling, preprocessing, naive bayes classification, accuracy testing, and visualization using Power BI software. The accuracy test results obtained using confusion matrix with 80% training data division and 20% test data obtained 76% accuracy results.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] Prof. Dr. Sri Adiningsih, S.E., M.Sc, Transformasi Ekonomi Berbasis Digital di Indonesia: Lahirnya Tren Baru Teknologi, Bisnis, Ekonomi, dan Kebijakan di Indonesia. Gramedia Pustaka Utama, 2019.
[2] Diah Pramesti, J. Andini, Dyah Aurum Kinanthi Raharjo, and Arif Devi Dwipayana, “Efektivitas Penggunaan Moda Transportasi Umum Dengan Kendaraan Pribadi,” Indonesian Journal of Multidisciplinary on Social and Technology, vol. 2, no. 1, pp. 6–16, Jan. 2024, doi: https://doi.org/10.31004/ijmst.v2i1.246.
[3] W. Nabila Putri, F. Nuraida Rezeki, Z. Dianita Zahra, L. Anisa Surya, A. Muhammad Rahmat , and S. Yuliani, “Transportasi Publik Meningkatkan Ekonomi Hijau Secara Berkelanjutan di Jakarta,” Jurnal Multidisiplin Ilmu Akademik, vol. 1, no. 3, Jun. 2024.
[4] Hani Subagio, Dwinanta Nugroho, Muhamad Ridwan, Hari Rachmadi, and Ajeng Tri Kadesti, “Mengurai Kemacetan dalam Konteks Tata Ruang Perkotaan Yogyakarta,” Jurnal Politik dan Pemerintahan Daerah, vol. 5, no. 2, pp. 23–31, Dec. 2023, doi: https://doi.org/10.36355/jppd.v5i2.124.
[5] M. Benny, Investasi dan Reformasi Transportasi Kota. Syiah Kuala University Press, 2024.
[6] A. Rosa and A. Widad, “Faktor-Faktor yang Membedakan Keputusan Konsumen Menggunakan Jasa Transportasi Dalam Kota (Studi Kasus Angkutan Umum Konvensional dan Berbasis Online),” Jurnal Manajemen dan Bisnis Sriwijaya, vol. 15, no. 3, pp. 164–172, 2017
[7] A. Ayu, None Aulia Rofika Dewi, D. Panca, None Raisya Kanahaya Achmad, and I. Viska, “Analisis Pengaruh Manajemen Mutu Terhadap Kinerja, Efektivitas, dan Keandalan pada Transportasi Kereta Rel Listrik (KRL),” Jurnal Riset Manajemen dan Ekonomi (JRIME), vol. 2, no. 3, pp. 97–107, Jun. 2024, doi: https://doi.org/10.54066/jrime-itb.v2i3.1996.
[8] A. Hikam, “Subsidi KRL Jadi Berbasis NIK Mulai 2025, Kemenhub: Agar Tepat Sasaran,” detikfinance, Aug. 28, 2024. https://finance.detik.com/berita-ekonomi-bisnis/d-7512817/subsidi-krl-jadi-berbasis-nik-mulai-2025-kemenhub-agar-tepat-sasaran?utm_campaign=detikcomsocmed&utm_medium=oa&utm_source=twitter&utm_content=detikfinance.
[9] I. G. Oswaldo, “Bukan Rp 3.000, Ternyata Segini Tarif Asli Naik KRL Jika Tak Disubsidi,” detikfinance, Sep. 13, 2024. https://finance.detik.com/berita-ekonomi-bisnis/d-7539523/aturan-subsidi-mau-diubah-ternyata-segini-tarif-asli-naik-krl
[10] T. Liedfray, F. J. Waani, and J. J. Lasut, “Peran Media Sosial Dalam Mempererat Interaksi Antar Keluarga Di Desa Esandom Kecamatan Tombatu Timur Kabupaten Minahasa Tenggara,” Jurnal Ilmiah Society, vol. 2, no. 1, Jan. 2022
[11] E. Kontopoulos, C. Berberidis, T. Dergiades, and N. Bassiliades, “Ontology-based sentiment analysis of twitter posts,” Expert Systems with Applications, vol. 40, no. 10, pp. 4065–4074, Aug. 2013, doi: https://doi.org/10.1016/j.eswa.2013.01.001.
[12] A. A. F. Amarta and I. G. Anugrah, “Implementasi Agile Scrum Dengan Menggunakan Trello Sebagai Manajemen Proyek Di PT Andromedia,” Jurnal Nasional Komputasi dan Teknologi Informasi (JNKTI), vol. 4, no. 6, pp. 528–534, Dec. 2021, doi: https://doi.org/10.32672/jnkti.v4i6.3702.
[13] A. Dennis, Barbara Haley Wixom, and R. M. Roth, Systems analysis and design. Hoboken, Nj: Wiley, 2015.
[14] Evasaria Magdalena Sipayung, Herastia Maharani, and I. Zefanya, “Perancangan Sistem Analisis Sentimen Komentar Pelanggan Menggunakan Metode Naive Bayes Classifier,” JSI: Jurnal Sistem Informasi (E-Journal), vol. 8, no. 1, 2016, doi: https://doi.org/10.18495/jsi.v8i1.3250.
[15] D. Ikasari and Widiastuti Widiastuti, “Sentiment Analysis Review Novel ‘Goodreads’ Berbahasa Indonesia Menggunakan Naïve Bayes Classifier,” Semnas Ristek (Seminar Nasional Riset dan Inovasi Teknologi), vol. 5, no. 1, 2021, doi: https://doi.org/10.30998/semnasristek.v5i1.5040.
[16] A. R. Alaei, S. Becken, and B. Stantic, “Sentiment Analysis in Tourism: Capitalizing on Big Data,” Journal of Travel Research, vol. 58, no. 2, pp. 175–191, Dec. 2019, doi: https://doi.org/10.1177/0047287517747753.
[17] A. Halim and None Andri Safuwan, “Analisis Sentimen Opini Warganet Twitter Terhadap Tes Screening Genose Pendeteksi Virus Covid-19 Menggunakan Metode Naive Bayes Berbasis Particle Swarm Optimization,” Jurnal Informatika Teknologi dan Sains (Jinteks), vol. 5, no. 1, pp. 170–178, Feb. 2023, doi: https://doi.org/10.51401/jinteks.v5i1.2229.
[18] G. P. Wiratama and A. Rusli, “Sentiment Analysis of Application User Feedback in Bahasa Indonesia Using Multinomial Naive Bayes,” 2019 5th International Conference on New Media Studies (CONMEDIA), Oct. 2019, doi: https://doi.org/10.1109/conmedia46929.2019.8981850.
[19] P. Y. Saputra, D. H. Subhi, and F. Z. A. Winatama, “Implementasi Sentimen Analisis Komentar Channel Video Pelayanan Pemerintah di Youtube Menggunakan Algoritma Naive Bayes,” Jurnal Informatika Polinema, vol. 5, no. 4, pp. 209–213, Aug. 2019, doi: https://doi.org/10.33795/jip.v5i4.259.
[20] S. Sarwosri, A. H. Basori, and W. B. Surastyo, “Aplikasi Web Crawler Untuk Web Content Pada Mobile Phone,” JUTI: Jurnal Ilmiah Teknologi Informasi, vol. 7, no. 3, p. 127, Jan. 2009, doi: https://doi.org/10.12962/j24068535.v7i3.a79.
[21] Iksan Ramadhan and Husni Sastramihardja, “Pemanfaatan Web Crawler Dalam Mengumpulkan Informasi Melalui Internet,” Konferensi Nasional Sistem Informasi (KNSI) 2018.
[22] Nurman Satya Marga, “Sentimen Analisis Tentang Kebijakan Pemerintah Terhadap Kasus Corona Menggunakan Metode Naive Bayes,” Jurnal Informatika dan Rekayasa Perangkat Lunak, vol. 2, no. 4, pp. 453–463, Feb. 2022, doi: https://doi.org/10.33365/jatika.v2i4.1602.
[23] H. Zhang and D. Li, “Naïve Bayes Text Classifier,” IEEE Xplore, Nov. 01, 2007, doi:https://doi.org/10.1109/GrC.2007.40.
[24] H. Apriyani and K. Kurniati, “Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus,” Journal of Information Technology Ampera, vol. 1, no. 3, pp. 133–143, Dec. 2020, doi: https://doi.org/10.51519/journalita.volume1.isssue3.year2020.page133-143.
[25] J. Azhar and Widya Syaharani, “Prakiraan Cuaca Dengan Menggunakan Metode Naive Bayes Classifier,” Jurnal Media Teknik Elektro dan Komputer, vol. 1, no. 1, pp. 11–18, 2024.
[26] D. Jurafsky and J. H. Martin, Speech and Language Processing. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. 2023.
[27] Farkhan Nuruz Zaman, Mohamad Agung Fadhilah, Masy Ari Ulinuha, and Khothibul Umam, “Menganalisis Respons Netizen Twitter Terhadap Program Makan Siang Gratis Menerapkan NLP Metode Naïve Bayes,” Just IT : Jurnal Sistem Informasi, Teknologi Informasi dan Komputer, vol. 14, no. 3, pp. 201–208, 2024, doi: https://doi.org/10.24853/justit.14.3.201-208.