IMPLEMENTASI METODE KLASIFIKASI UNTUK IDENTIFIKASI JENIS KACANG KERING BERDASARKAN FITUR MORFOLOGI
Main Article Content
Abstract
Identification of dry bean species is a critical challenge in the agricultural industry, especially to ensure the quality and optimal utilization of the product. This study focuses on the application of a morphological feature-based classification method to automatically recognize dry bean species. Features such as size, shape, surface texture, and color are used as the basis for classification. Several classification algorithms, including K-Nearest Neighbors (KNN), Artificial Neural Network (ANN), Decision Tree, were tested to find the most effective algorithm in identifying the types of beans. The research dataset includes various types of dry beans with different morphological variations. The experimental results show that the morphological feature-based classification approach is able to achieve a high level of accuracy, with Artificial Neural Network (ANN) being the algorithm that shows the best performance. The implementation of this method is expected to provide practical solutions in managing the quality and processing of dry beans in the agricultural sector.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] G. Słowiński, “Dry Beans Classification Using Machine Learning,” 2021. [Online]. Available: http://ceur-ws.org
[2] M. Salauddin Khan et al., “Comparison of multiclass classification techniques using dry bean dataset,” International Journal of Cognitive Computing in Engineering, vol. 4, pp. 6–20, Jun. 2023, doi: 10.1016/j.ijcce.2023.01.002.
[3] H. Vaidya, K. Swamy Karekal, K. V Prasad, and K. Kumar Swamy, “Multiclass Classification of Dry Beans using Artificial Neural Network,” 2023. [Online]. Available: https://www.researchgate.net/publication/373523354
[4] A. Mehta, P. Sengupta, D. Garg, H. Singh, and Y. S. Diamand, “Benchmarking the Effectiveness of Classification Algorithms and SVM Kernels for Dry Beans,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.07863
[5] E. Dönmez, S. Kılıçarslan, and A. Diker, “Classification of hazelnut varieties based on bigtransfer deep learning model,” European Food Research and Technology, vol. 250, no. 5, pp. 1433–1442, May 2024, doi: 10.1007/s00217-024-04468-1.
[6] M. Koklu and I. A. Ozkan, “Multiclass classification of dry beans using computer vision and machine learning techniques,” Comput Electron Agric, vol. 174, Jul. 2020, doi: 10.1016/j.compag.2020.105507.
[7] S. Krishnan, S. K. Aruna, K. Kanagarathinam, and E. Venugopal, “Identification of Dry Bean Varieties Based on Multiple Attributes Using CatBoost Machine Learning Algorithm,” Sci Program, vol. 2023, 2023, doi: 10.1155/2023/2556066.
[8] I. Wardhana, Musi Ariawijaya, Vandri Ahmad Isnaini, and Rahmi Putri Wirman, “Gradient Boosting Machine, Random Forest dan Light GBM untuk Klasifikasi Kacang Kering,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, 2022, doi: 10.29207/resti.v6i1.3682.
[9] H. Hananti and K. Sari, “Perbandingan Metode Support Vector Machine (SVM) dan Artificial Neural Network (ANN) pada Klasifikasi Gizi Balita,” Seminar Nasional Official Statistics, vol. 2021, no. 1, 2021, doi: 10.34123/semnasoffstat.v2021i1.1014.
[10] E. Matel, F. Vahdatikhaki, S. Hosseinyalamdary, T. Evers, and H. Voordijk, “An artificial neural network approach for cost estimation of engineering services,” International Journal of Construction Management, vol. 22, no. 7, 2022, doi: 10.1080/15623599.2019.1692400.
[11] K. Sinha, Z. Uddin, H. I. Kawsar, S. Islam, M. J. Deen, and M. M. R. Howlader, “Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks,” 2023. doi: 10.1016/j.trac.2022.116861.
[12] A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, 2022, doi: 10.1016/j.jksuci.2022.04.006.
[13] M. Suyal and P. Goyal, “A Review on Analysis of K-Nearest Neighbor Classification Machine Learning Algorithms based on Supervised Learning,” 2022. doi: 10.14445/22315381/IJETT-V70I7P205.
[14] S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 6, no. 2, 2021, doi: 10.31294/ijcit.v6i2.10438.
[15] T. A. Q. Putri, A. Triayudi, and R. T. Aldisa, “Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentimen Terhadap Kepuasan Pelanggan Starbucks,” Journal of Information System Research (JOSH), vol. 4, no. 2, pp. 641–649, Jan. 2023, doi: 10.47065/josh.v4i2.2949.
[16] M. B. Abdul Majid, Y. M. Cani, and U. Enri, “Penerapan Algoritma K-Means dan Decision Tree Dalam Analisis Prestasi Siswa Sekolah Menengah Kejuruan,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 355, Dec. 2022, doi: 10.30865/json.v4i2.5299.
[17] F. Y. Pamuji and V. P. Ramadhan, “Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy,” Jurnal Teknologi dan Manajemen Informatika, vol. 7, no. 1, 2021, doi: 10.26905/jtmi.v7i1.5982.
[18] B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “PENGUKURAN KINERJA SISTEM KUALITAS UDARA DENGAN TEKNOLOGI WSN MENGGUNAKAN CONFUSION MATRIX,” Jurnal Informatika Upgris, vol. 6, no. 2, 2021, doi: 10.26877/jiu.v6i2.6552.
[19] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2994222.
[20] G. Zeng, “On the confusion matrix in credit scoring and its analytical properties,” Commun Stat Theory Methods, vol. 49, no. 9, 2020, doi: 10.1080/03610926.2019.1568485.