VISUALISASI DAN PREDIKSI KEDATANGAN PENUMPANG NGURAH RAI MENGGUNAKAN METODE HOLT-WINTERS
Main Article Content
Abstract
I Gusti Ngurah Rai International Airport is one of the airports in Indonesia which is located in Bali which has a large number of passenger arrivals because Bali has many interesting tourist attractions to visit. I Gusti Ngurah Rai international airport data certainly has a large size so that Business Intelligence (BI) technology is needed, namely a dashboard to process this data and gain insight. Forecasting the number of passenger arrivals is also carried out in order to be able to analyze what the number of passenger arrivals would be like in the future. Therefore, in this case the dashboard was made using the prototyping method and data mining with forecasting or forecasting using the Holt-Winters triple exponential smoothing method. The smoothing parameters used are alpha = 0.3, beta = 0.01, and gamma = 0.01 with the MAPE result of 32.04%. With the visualization on the dashboard, it is hoped that it will make it easier for the company that manage the airport to monitor the number of passenger arrivals at I Gusti Ngurah Rai International Airport so that they are able to make decisions in managing the airport.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
Hudiyanti, C., Bachtiar, F., & Setiawan, B., 2019, Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(3), 2667-2672.
Akbar, R., Wulandari, W., Hasanah, Z., & Gravina, H. (2017). IMPLEMENTASI BUSINESS INTELLIGENCE UNTUK MENENTUKAN MAHASISWA PENERIMA BEASISWA. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 3(1), 65–69.
Aryati, A., Purnamasari, I., & Nasution, Y., 2021, Peramalan dengan Menggunakan Metode Holt-Winters Exponential Smoothing. EKSPONENSIAL, 11(1), 99-106.
Nindian Puspa Dewi, & Listiowarni, I., 2020. Implementasi Holt-Winters Exponential Smoothing untuk Peramalan Harga Bahan Pangan di Kabupaten Pamekasan. Digital Zone: Jurnal Teknologi Informasi Dan Komunikasi, 11(2), 219-231.
Sherman, R., 2014. Business intelligence guidebook : from data integration to analytics. Elsevier.
Elfajar, A., Setiawan, B., & Dewi, C., 2017. Peramalan Jumlah Kunjungan Wisatawan Kota Batu Menggunakan Metode Time Invariant Fuzzy Time Series. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 1(2), 85-94.