POTENSI BIOMASSA GASIFIKASI: ALTERNATIF BERKELANJUTAN DALAM MENGHASILKAN ENERGI LISTRIK UNTUK MASA DEPAN

Main Article Content

Fatimatuz Zahro
Mohammad Budiyanto
Fasih Bintang Ilhami

Abstract

The use of sustainable energy sources is becoming increasingly important in responding to future energy challenges. One promising alternative is biomass gasification, which is the process of converting biomass into synthesis gas or methane gas. The potential of gasified biomass as a source of electrical energy has attracted the attention of energy researchers and practitioners. The study aims to illustrate the potential of gasified biomass as a sustainable alternative in generating electrical energy for the future. The research method used is the systematic review method. Systematic review research  is carried out by reviewing certain criteria in a structured manner to determine the evidence base.  The results of the analysis show that gasified biomass has significant potential as a sustainable source of electrical energy.  Biomass that can be used in gasification includes agricultural waste, forest waste, industrial waste, and special energy crops grown specifically for energy purposes. The main advantages of gasified biomass include abundant availability, renewable properties, and the ability to reduce greenhouse gas emissions. In addition, gasified biomass can also be integrated with carbon capture and storage technologies to further reduce CO2 emissions.  Biomass gasification has great potential as a sustainable alternative in generating electrical energy for the future.  The thermal efficiency of biomass gasification can reach a higher level compared to the direct combustion of biomass or the use of conventional steam power plants.  Supporting factors for the utilization of gasified biomass include abundant resource potential, waste management, reduction of house gas emissions.


ABSTRAK: Penggunaan sumber energi yang berkelanjutan menjadi semakin penting dalam menjawab tantangan energi di masa depan. Salah satu alternatif yang menjanjikan adalah biomassa gasifikasi, yang merupakan proses konversi biomassa menjadi gas sintesis atau gas metana. Potensi biomassa gasifikasi sebagai sumber energi listrik telah menarik perhatian para peneliti dan praktisi energi.Studi ini bertujuan untuk menggambarkan potensi biomassa gasifikasi sebagai alternatif berkelanjutan dalam menghasilkan energi listrik untuk masa depan. Metode penelitian yang digunakan adalah metode systematic review. Penelitian systematic review dilakukan dengan penelaahan dengan kriteria tertentu secara terstruktur untuk mengetahui evidence base. Hasil analisis menunjukkan bahwa biomassa gasifikasi memiliki potensi yang signifikan sebagai sumber energi listrik yang berkelanjutan. Biomassa yang dapat digunakan dalam gasifikasi meliputi limbah pertanian, limbah hutan, limbah industri, dan tanaman energi khusus yang ditanam secara khusus untuk tujuan energi. Keuntungan utama biomassa gasifikasi termasuk ketersediaan yang melimpah, sifat terbarukan, dan kemampuan untuk mengurangi emisi gas rumah kaca. Selain itu, biomassa gasifikasi juga dapat diintegrasikan dengan teknologi penangkapan dan penyimpanan karbon untuk mengurangi emisi CO2 lebih lanjut. Biomassa gasifikasi memiliki potensi besar sebagai alternatif berkelanjutan dalam menghasilkan energi listrik untuk masa depan. Efisiensi termal gasifikasi biomassa dapat mencapai tingkat yang lebih tinggi dibandingkan dengan pembakaran langsung biomassa atau penggunaan pembangkit listrik tenaga uap konvensional. Faktor pendukung pemanfaatan biomassa gasifikasi meliputi potensi sumber daya yang melimpah, pengelolaan limbah, reduksi emisis gas rumah kaca.

Article Details

How to Cite
[1]
F. Zahro, M. Budiyanto, and F. B. Ilhami, “POTENSI BIOMASSA GASIFIKASI: ALTERNATIF BERKELANJUTAN DALAM MENGHASILKAN ENERGI LISTRIK UNTUK MASA DEPAN”, TESLA, vol. 25, no. 2, pp. 103–115, Oct. 2023.
Section
Articles

References

Y. Zhang, I. Khan, and M. W. Zafar, “Assessing environmental quality through natural resources, energy resources, and tax revenues,” Environ. Sci. Pollut. Res., vol. 29, no. 59, pp. 89029–89044, Dec. 2022, doi: 10.1007/s11356-022-22005-z.

G. Yadav, T. Mathimani, M. Sekar, R. Sindhu, and A. Pugazhendhi, “Strategic evaluation of limiting factors affecting algal growth – An approach to waste mitigation and carbon dioxide sequestration,” Sci. Total Environ., vol. 796, Nov. 2021, doi: 10.1016/j.scitotenv.2021.149049.

S. Algarni, V. Tirth, T. Alqahtani, S. Alshehery, and P. Kshirsagar, “Contribution of renewable energy sources to the environmental impacts and economic benefits for sustainable development,” Sustain. Energy Technol. Assessments, vol. 56, p. 103098, Mar. 2023, doi: 10.1016/J.SETA.2023.103098.

L. Parinduri and T. Parinduri, “Konversi Biomassa Sebagai Sumber Energi Terbarukan,” J. Electr. Technol., vol. 5, no. 2, pp. 88–92, 2020, [Online]. Available: https://www.dosenpendidikan.

Sekretariat Jenderal Dewan Energi Nasional, “Laporan Analisis Nerasa Energi Nasional,” Sekr. Jenderal Dewan Energi Nas., vol. 1, no. 1, pp. 1–108, 2022.

S. A. Arsita, G. E. Saputro, and S. Susanto, “Perkembangan Kebijakan Energi Nasional dan Energi Baru Terbarukan Indonesia,” J. Syntax Transform., vol. 2, no. 12, pp. 1779–1788, Dec. 2021, doi: 10.46799/JST.V2I12.473.

V. Schnorf, E. Trutnevyte, G. Bowman, and V. Burg, “Biomass transport for energy: Cost, energy and CO2 performance of forest wood and manure transport chains in Switzerland,” J. Clean. Prod., vol. 293, p. 125971, Apr. 2021, doi: 10.1016/J.JCLEPRO.2021.125971.

Y. Wu et al., “Applications of catalysts in thermochemical conversion of biomass (pyrolysis, hydrothermal liquefaction and gasification): A critical review,” Renew. Energy, vol. 196, pp. 462–481, Aug. 2022, doi: 10.1016/J.RENENE.2022.07.031.

P. R. Havilah, A. K. Sharma, G. Govindasamy, L. Matsakas, and A. Patel, “Biomass Gasification in Downdraft Gasifiers: A Technical Review on Production, Up-Gradation and Application of Synthesis Gas,” Energies 2022, Vol. 15, Page 3938, vol. 15, no. 11, p. 3938, May 2022, doi: 10.3390/EN15113938.

H. MacDonald, E. Hope, K. de Boer, and D. W. McKenney, “Sentiments toward use of forest biomass for heat and power in canadian headlines,” Heliyon, vol. 9, no. 2, p. e13254, Feb. 2023, doi: 10.1016/J.HELIYON.2023.E13254.

T. Plankenbühler, D. Müller, and J. Karl, “An adaptive and flexible biomass power plant control system based on on-line fuel image analysis,” Therm. Sci. Eng. Prog., vol. 40, p. 101765, May 2023, doi: 10.1016/J.TSEP.2023.101765.

J. A. Kumar et al., “Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies,” Chemosphere, vol. 331, p. 138680, Aug. 2023, doi: 10.1016/J.CHEMOSPHERE.2023.138680.

N. Sasaki, “Timber production and carbon emission reductions through improved forest management and substitution of fossil fuels with wood biomass,” Resour. Conserv. Recycl., vol. 173, p. 105737, Oct. 2021, doi: 10.1016/J.RESCONREC.2021.105737.

P. Addai, A. K. Mensah, E. Sekyi-Annan, and E. O. Adjei, “Biochar, compost and/or NPK fertilizer affect the uptake of potentially toxic elements and promote the yield of lettuce grown in an abandoned gold mine tailing,” J. Trace Elem. Miner., vol. 4, p. 100066, Jun. 2023, doi: 10.1016/J.JTEMIN.2023.100066.

N. Shabani, S. Akhtari, and T. Sowlati, “Value chain optimization of forest biomass for bioenergy production: A review,” Renew. Sustain. Energy Rev., vol. 23, pp. 299–311, 2013, doi: 10.1016/j.rser.2013.03.005.

Z. N. Milovanović, D. L. Branković, and V. Z. Janičić Milovanović, “Efficiency of condensing thermal power plant as a complex system—An algorithm for assessing and improving energy efficiency and reliability during operation and maintenance,” Reliab. Model. Ind. 4.0, pp. 233–325, Jan. 2023, doi: 10.1016/B978-0-323-99204-6.00005-4.

Y. Yu et al., “Steam explosion of lignocellulosic biomass for multiple advanced bioenergy processes: A review,” Renew. Sustain. Energy Rev., vol. 154, p. 111871, Feb. 2022, doi: 10.1016/J.RSER.2021.111871.

C. T. K. Kho, J. Ahmed, S. Kashem, and Y. L. Then, “A comprehensive review on PV configurations to maximize power under partial shading,” IEEE Reg. 10 Annu. Int. Conf. Proceedings/TENCON, vol. 2017-December, pp. 763–768, Dec. 2017, doi: 10.1109/TENCON.2017.8227962.

S. L. Narnaware and N. L. Panwar, “Biomass gasification for climate change mitigation and policy framework in India: A review,” Bioresour. Technol. Reports, vol. 17, p. 100892, Feb. 2022, doi: 10.1016/J.BITEB.2021.100892.

K. Kang, N. B. Klinghoffer, I. ElGhamrawy, and F. Berruti, “Thermochemical conversion of agroforestry biomass and solid waste using decentralized and mobile systems for renewable energy and products,” Renew. Sustain. Energy Rev., vol. 149, p. 111372, Oct. 2021, doi: 10.1016/J.RSER.2021.111372.

Ankush Halba, Praveen Kumar, and Vidyarthi, “Gasification as a potential solution for forest fires in the Indian Himalayan Region: A review,” Bioresour. Technol. Reports, vol. 19, p. 101162, Sep. 2022, doi: 10.1016/J.BITEB.2022.101162.

H. Shahbeig, A. Shafizadeh, M. A. Rosen, and B. F. Sels, “Exergy sustainability analysis of biomass gasification: a critical review,” Biofuel Res. J., vol. 9, no. 1, 2022, doi: 10.18331/BRJ2022.9.1.5.

R. van Dinter, B. Tekinerdogan, and C. Catal, “Automation of systematic literature reviews: A systematic literature review,” Information and Software Technology, vol. 136. 2021. doi: 10.1016/j.infsof.2021.106589.

U. F. Al-afifi, E. Syam, and E. Piter, “Perhitungan Potensi Energi Listrik Pada Sekam Padi Melalui Metode Gasifikasi,” SainETIn J. Sains, Energi, Teknol. dan Ind., vol. 4, no. 2, pp. 48 – 56–48 – 56, Mar. 2020, doi: 10.31849/SAINETIN.V4I2.4329.

Y. Zhang et al., “Gasification Technologies and Their Energy Potentials,” Sustain. Resour. Recover. Zero Waste Approaches, pp. 193–206, Jan. 2019, doi: 10.1016/B978-0-444-64200-4.00014-1.

A. Kozlov, O. Marchenko, and S. Solomin, “The modern state of wood biomass gasification technologies and their economic efficiency,” Energy Procedia, vol. 158, pp. 1004–1008, Feb. 2019, doi: 10.1016/J.EGYPRO.2019.01.244.

Kazuyuki, Murakami, et al. Biomass and Coal Co-combustion in the ASEAN Region (Phase 2). 2021.

Abeth Novria Sonjaya, A. N. S. Analisis Simulasi Gasifikasi Sampah Padat Kota Dengan Fixed Bed Downdraft Gasifier (Studi Kasus Tpa Putri Cempo Surakarta). 2022. PhD Thesis. Universitas Jayabaya.

Wahid, Abdul, Et Al. Exergy Analysis Of Coal-Fired Power Plants In Ultra Supercritical Technology Versus Integrated Gasification Combined Cycle. 2020.

Adistia, Nurul Amandha, et al. "Potensi energi panas bumi, angin, dan biomassa menjadi energi listrik di Indonesia." TESLA: Jurnal Teknik Elektro 22.2 (2020): 105-116.