DESIGN OF A MONITORING SYSTEM FOR SOLAR-POWERED PUBLIC STREET LIGHTING

Main Article Content

Kelvin
Endah Setyaningsih
Hadian Satria Utama

Abstract

Street lighting is an essential facility that ensures the comfort and safety of road users at night. PJU can utilize resources from PLN electricity, solar energy, or a combination of both (hybrid). Solar-Powered Street Lighting fully utilizes solar energy (off-grid) or partially (hybrid) for its energy needs. However, the efficiency of solar panels tends to decrease during operational periods due to negative temperature coefficients, mechanical loads, and weather conditions. Additionally, the lithium-ion batteries used in PJUTS degrade over time. Therefore, a monitoring system is needed to measure the performance of PJUTS, ensure timely maintenance for solar panels and batteries, and maintain the performance of the Solar Charge Controller during the battery charging and discharging cycles. The INA219 sensor is used to simultaneously read current and voltage. Data from this sensor (current and voltage of the solar panels, battery during charging, and battery during discharging) is sent to a web server via WiFi using the ESP32 microcontroller with the HTTP GET method. The data received by the web server is stored in a MySQL database. A web page then displays the real-time PJUTS data retrieved from the database, processed into graphs and tables that can be accessed based on specific dates. Testing shows that the INA219 sensor has a small deviation compared to the Fluke multimeter, with an average voltage deviation of 0.046V and an average current deviation of 0.93 mA


Abstrak


Penerangan jalan umum merupakan fasilitas penting yang memastikan kenyamanan dan keselamatan pengguna jalan pada malam hari. PJU dapat menggunakan sumber daya dari listrik PLN, energi matahari, atau kombinasi keduanya (hybrid). Penerangan Jalan Umum Tenaga Surya sepenuhnya memanfaatkan energi matahari (off-grid) atau sebagian (hybrid) untuk kebutuhan energinya. Namun, efisiensi panel surya cenderung menurun selama masa operasional akibat koefisien suhu negatif, beban mekanis, dan kondisi cuaca. Selain itu, baterai lithium-ion yang digunakan dalam PJUTS mengalami degradasi seiring waktu. Oleh karena itu, diperlukan sistem pemantauan untuk mengukur kinerja PJUTS, memastikan perawatan tepat waktu untuk panel surya dan baterai, serta menjaga kinerja Solar Charge Controller dalam siklus pengisian dan pemakaian baterai. Sensor INA219 digunakan untuk membaca arus dan tegangan secara bersamaan. Data dari sensor ini (arus dan tegangan panel surya, baterai saat pengisian, dan baterai saat pemakaian) dikirim ke server web melalui WiFi menggunakan mikrokontroler ESP32 dengan protokol HTTP metode GET. Data yang diterima server web disimpan dalam basis data MySQL. Halaman web kemudian menampilkan data real-time PJUTS yang diambil dari basis data, diolah menjadi grafik dan tabel yang dapat diakses berdasarkan tanggal tertentu. Pengujian menunjukkan bahwa sensor INA219 memiliki deviasi kecil terhadap multimeter Fluke, dengan rata-rata deviasi tegangan sebesar 0,046V dan rata-rata deviasi arus sebesar 0,93 mA

Article Details

How to Cite
[1]
Kelvin, Endah Setyaningsih, and Hadian Satria Utama, “DESIGN OF A MONITORING SYSTEM FOR SOLAR-POWERED PUBLIC STREET LIGHTING”, TESLA, vol. 26, no. 2, pp. 186–196, Jan. 2025.
Section
Articles

References

[1] W. van Bommel, Road lighting: Fundamentals, technology and application. Springer International Publishing, 2015.

[2] W. Sutopo, I. S. Mardikaningsih, R. Zakaria, and A. Ali, “A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study,” Energies (Basel), vol. 13, no. 3, 2020.

[3] D. Y. Goswami, Principles of Solar Engineering, 3rd ed. Boca Raton: Taylor and Francis Group, 2015.

[4] T. Dittrich, Materials Concepts for Solar Cells. London: World Scientific Publishing Europe, 2018.

[5] P. Gevorkian, Large-Scale Solar Power System Design : An Enginnering Guide for Grid-Connected Solar Power Generation. United States of America: Mc-Graw Hill, 2011.

[6] M. Boxwell, Solar Electricity Handbook : A Simple Practical Guide to Solar Energy - Designing and Installing Solar PV Systems, 11th ed. Birmingham: Greenstream Publishing Ltd, 2017.

[7] D. F. Silalahi, A. Blakers, M. Stocks, B. Lu, C. Cheng, and L. Hayes, “Indonesia’s Vast Solar Energy Potential,” Energies (Basel), vol. 14, no. 17, Sep. 2021.

[8] R. A. Marques Lameirinhas, J. P. N. Torres, and J. P. de Melo Cunha, “A Photovoltaic Technology Review: History, Fundamentals and Applications,” Energies, vol. 15, no. 5. MDPI, Mar. 01, 2022.

[9] A. Al–bashir, M. Al-Dweri, A. Al–ghandoor, B. Hammad, and W. Al–kouz, “Analysis of Effects of Solar Irradiance, Cell Temperature and Wind Speed on Photovoltaic Systems Performance,” International Journal of Energy Economics and Policy, vol. 10, no. 1, pp. 353–359, 2020.

[10] M. Dhimish, V. d’Alessandro, and S. Daliento, “Investigating the Impact of Cracks on Solar Cells Performance: Analysis Based on Nonuniform and Uniform Crack Distributions,” IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1684–1693, 2021.

[11] K. Hasan, S. B. Yousuf, M. S. H. K. Tushar, B. K. Das, P. Das, and M. S. Islam, “Effects of Different Environmental and Operational Factors on the PV Performance: A Comprehensive Review,” Energy Science and Engineering, vol. 10, no. 2. John Wiley and Sons Ltd, pp. 656–675, Feb. 01, 2022.

[12] J. S. Edge et al., “Lithium Ion Battery Degradation: What You Need to Know,” Physical Chemistry Chemical Physics, vol. 23, no. 14. Royal Society of Chemistry, pp. 8200–8221, Apr. 14, 2021.

[13] N. Kularatna, “Rechargeable Batteries and Their Management,” IEEE Instrum Meas Mag, vol. 14, no. 2, pp. 20–33, Apr. 2011.

[14] K. El, H. Mahmoudi, and B. Lakssir, “Smart Solar Battery Charge for PV-Application,” Journal of Power Electronics, vol. 11, no. 2, pp. 117–130, 2018.

[15] E. Mulyana and S. Sumaryo, “Data Monitoring System of Solar Module with Data Logger for Public Street Lighting Application,” in 26th International Conference on Telecomunication (ICT), 2019, pp. 280–283.

[16] D. Bentabet and S. R. Sonaskar, “Energy efficient : IOT Based Street Lights Monitoring System by using Solar Energy with NodeMCU,” in Second International Conference on Embedded and Distributed Systems, 2019.

[17] B. J. Setiawan, G. A. Pauzi, A. Riyanto, and A. Surtono, “Design and Build Voltage and Current Monitoring Parameters Device of Rechargeable Batteries in Real-Time Using the INA219 GY-219 Sensor,” Journal of Energy, Material, and Instrumentation Technology, vol. 4, no. 2, pp. 58–71, 2023.

[18] Texas Instruments, INA219 Zerø-Drift, Bidirectional Current/Power Monitor With I 2C Interface. United State of America: Texas Instruments, 2015.

[19] Espressif Systems, ESP32 Series Datasheet v4.4. Shanghai: Espressif Systems, 2023.

[20] B. Razavi, Fundamentals of Microelectronics : With Robotics and Bioengineering Applications, 3rd ed. Hoboken: Willey, 2021.

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.