DESIGN OF WIRELESS SENSOR NETWORK FOR BATTERY MANAGEMENT SYSTEM IN SOLAR PUBLIC STREET LIGHTING
Main Article Content
Abstract
Batteries are an energy source that can be used as backup electrical energy in several electronic devices. Solar power generation (solar cells) and management of Public Street Lighting (PJUTS) require batteries as the main component so that the system can run well. Generally, the batteries used in solar cell systems and public street lighting use Lithium-Ion batteries because these batteries can last a long time and are more environmentally friendly. However, there are often problems that can occur with batteries used in Solar Power Generation (PLTS) systems, namely that they easily degrade, have a short life cycle and there are losses in the battery caused by internal resistance. This problem can be avoided with a Battery Management System (BMS) that is good at monitoring system performance effectively to avoid damage and failure in battery function. With advances in technology, a model for monitoring and storing current, voltage and battery temperature values was created that was integrated with an Android device via Internet of Things communication using a NodeMCU device, WCS1800 sensor, DSB1820 sensor and 4 12V Lithium-Ion batteries using the IoT application. on smartphones and Coulomb calculations. The state of charge and state of health values are obtained using 2 nodes with specifications per node having a light load of 4 with a size of 50 Watts
Abstrak
Baterai merupakan sumber energi yang dapat digunakan sebagai cadangan energi listrik pada beberapa perangkat elektronik. Pembangkit listrik tenaga surya (solar cell) dan pengelolaan Penerangan Jalan Umum (PJUTS) membutuhkan baterai sebagai komponen utamanya agar sistem dapat berjalan dengan baik. Umumnya baterai yang digunakan dalam sistem solar cell dan penerangan jalan umum menggunakan baterai Lithium-Ion karena baterai ini mampu bertahan lama dan lebih ramah lingkungan. Namun sering terjadi kendala yang dapat terjadi pada baterai yang digunakan dalam sistem Pembangkit Listrik Tenaga Surya (PLTS) yaitu mudah mengalami degradasi, mendapati siklus hidup yang pendek dan terdapat rugi-rugi di dalam baterai yang disebabkan karena adanya hambatan internal. Kendala ini dapat dihindari dengan Battery Management System (BMS) yang bagus dalam monitoring kinerja sistem efektif untuk menghindari kerusakan dan kegagalan pada fungsi baterai. Dengan adanya kemajuan teknologi dibuatlah sebuah model pemantauan dan menyimpan nilai arus, tegangan, dan temperatur baterai yang terintegrasi dengan perangkat android melalui komunikasi Internet Of Things dengan menggunakan perangkat NodeMCU, sensor WCS1800, sensor DSB1820 dan 4 buah baterai Lithium-Ion 12V dengan menggunakan aplikasi IoT di smartphone dan perhitungan Coulomb. Nilai state of charge dan state of health didapatkan dengan menggunakan 2 node dengan spesifikasi per node memiliki beban lampu sebanyak 4 buah dengan ukuran 50 Watt
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
This work is licensed under a TESLA: Jurnal Teknik Elektro Creative Commons Attribution-ShareAlike 4.0 International License.
References
A. Publikasi et al., “Implementasi Sensor LDR Pada Prototipe Sistem Tracking Dual Axis Untuk Deteksi Arah Sinar Matahari Pada Sel Surya Implementation Of The LDR Sensor In The Dual Axis Tracking System Prototype For Detecting The Direction Of Sunlight On Solar Cells Jurusan El,” vol. 1, no. 5, 2023.
H. Timotius, J. W. Simatupang, M. Andriani, and ..., “Analisis Potensi Energi Matahari Menjadi Energi Listrik Di Indonesia: Proyeksi Dan Peramalan Kapasitas Terpasang Plts Dengan …,” … J. Tek. Elektro, vol. 25, no. 2, pp. 183–195, 2023, [Online]. Available: https://journal.untar.ac.id/index.php/tesla/article/view/25831%0Ahttps://journal.untar.ac.id/index.php/tesla/article/download/25831/16544.
K. Ranabhat, L. Patrikeev, A. A. evna Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, “An introduction to solar cell technology,” J. Appl. Eng. Sci., vol. 14, no. 4, pp. 481–491, 2016, doi: 10.5937/jaes14-10879.
G. Developer Training Team, “Android Developer Fundamentals Course-Concept Reference,” CIRED - Open Access Proc. J., vol. 2019, pp. 6–457, 2019.
F. Kartal, “New Battery Management System and its Application,” pp. 1–5, doi: 10.31031/EME.2021.03.000574.
B. Ashok Kumar, P. Seshadri, S. Senthilrani, and T. S. Bagavat Perumal, “Modeling of Battery Management for Standalone PV System,” J. Phys. Conf. Ser., vol. 2115, no. 1, 2021, doi: 10.1088/1742-6596/2115/1/012027.
P. Pal, K. R. Devabalaji, and S. Priyadarshini, “Design of battery management system for residential applications,” Int. J. Eng. Trends Technol., vol. 68, no. 3, pp. 12–17, 2020, doi: 10.14445/22315381/IJETT-V68I3P203S.
A. R. Afif, B. S. Aprillia, and W. Priharti, “Design and Implementation of Battery Management System for Portable Solar Panel with Coulomb Counting Method,” IOP Conf. Ser. Mater. Sci. Eng., vol. 771, no. 1, 2020, doi: 10.1088/1757-899X/771/1/012005.
P. D. Holey, “Design of BMS for Lithium-Ion Battery Used for P.V Solar System,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 11, no. 4, pp. 3050–3053, 2023, doi: 10.22214/ijraset.2023.50844.
M. Ridwan, F. A. Firmanto, and I. Setyabudi, “Rancang Bangun Engine Management System (EMS) pada Troopers Guard Robot 25 (TGR-25),” J. Otoranpur, vol. 2, no. Mei, pp. 49–56, 2021, doi: 10.54317/oto.v2imei.163.
D. Spiers, “Batteries in PV Systems,” Pract. Handb. Photovoltaics Fundam. Appl., pp. 587–631, 2003, doi: 10.1016/B978-185617390-2/50025-8.
R. C. Ananthraj and A. Ghosh, “Battery Management System in Electric Vehicle,” 2021 Int. Conf. Nascent Technol. Eng. ICNET 2021 - Proc., vol. 9, no. 05, pp. 605–607, 2021, doi: 10.1109/ICNTE51185.2021.9487762.
A. E. Mulyono, T. Mustika, H. P. Sulaikan, and E. Kartini, “Development of battery performance data acquisition system for monitoring battery performance inside solar cell system,” IOP Conf. Ser. Mater. Sci. Eng., vol. 432, no. 1, 2018, doi: 10.1088/1757-899X/432/1/012057.
“Perancangan Hardware State-Of-Charge Estimator untuk Baterai Lithium-Ion Berbasis Sensor Tegangan, Arus, dan Temperatur Menggunakan Neural Network pada Sistem Tertanam MUHAMMAD RAFLI, Ir. Oyas Wahyunggoro, MT., Ph.D.; Dzuhri Radityo Utomo, , ST, M.E., Ph.,” p. 2022, 2022.
A. A. Ghaffar, “Perangkat Load Cell,” vol. 20, pp. 1–23, 2016.
D. Rahmawati, M. Ulum, and H. Setiawan, “Design of Android Base Fuzzy Wireles Sensor Network for mini Smart Green House,” J. Phys. Conf. Ser., vol. 1028, no. 1, 2018, doi: 10.1088/1742-6596/1028/1/012051.
D. S. Ibrahim, A. F. Mahdi, and Q. M. Yas, “Challenges and Issues for Wireless Sensor Networks : A Survey,” J. Glob. Sci. Res., vol. 6, no. 1, pp. 1079–1097, 2021.
A. Joewono, R. Sitepu, and P. R. Angka, “Rancang Bangun Sistem Lampu Penerangan Jalan Umum Terintegrasi Dengan Battery Lithium,” J. Elektro, vol. 12, pp. 33–42, 2019.
D. Rahmawati, A. U. Ms, N. Faradhilah, R. Alfita, R. V. Nahari, and H. Setiawan, “Design of a Real Time Cow Smart Collar Health and Position Monitoring System,” pp. 1–7, 2024, doi: 10.1109/itis59651.2023.10420353.