IMPLEMENTASI KUALITAS MINUMAN WINE MENGGUNAKAN METODE KLASIFIKASI
Main Article Content
Abstract
This study aims to evaluate wine quality using three different classification algorithms: K-Nearest Neighbor (KNN), Artificial Neural Network (ANN), and Polynomial regression. The data used in this study comes from the Wine Quality repository, which includes various chemical attributes of wine, such as alcohol content, acidity, and sugar. Each algorithm is evaluated based on several performance metrics, including precision, recall, f1-score, and accuracy.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] G. Słowiński, “Dry Beans Classification Using Machine Learning,” 2021. [Online]. Available: http://ceur-ws.org
[2] M. Salauddin Khan et al., “Comparison of multiclass classification techniques using dry bean dataset,” International Journal of Cognitive Computing in Engineering, vol. 4, pp. 6–20, Jun. 2023, doi: 10.1016/j.ijcce.2023.01.002.
[3] H. Vaidya, K. Swamy Karekal, K. V Prasad, and K. Kumar Swamy, “Multiclass Classification of Dry Beans using Artificial Neural Network,” 2023. [Online]. Available: https://www.researchgate.net/publication/373523354
[4] A. Mehta, P. Sengupta, D. Garg, H. Singh, and Y. S. Diamand, “Benchmarking the Effectiveness of Classification Algorithms and SVM Kernels for Dry Beans,” Jul. 2023, [Online]. Available: http://arxiv.org/abs/2307.07863
[5] E. Dönmez, S. Kılıçarslan, and A. Diker, “Classification of hazelnut varieties based on bigtransfer deep learning model,” European Food Research and Technology, vol. 250, no. 5, pp. 1433–1442, May 2024, doi: 10.1007/s00217-024-04468-1.
[6] M. Koklu and I. A. Ozkan, “Multiclass classification of dry beans using computer vision and machine learning techniques,” Comput Electron Agric, vol. 174, Jul. 2020, doi: 10.1016/j.compag.2020.105507.
[7] S. Krishnan, S. K. Aruna, K. Kanagarathinam, and E. Venugopal, “Identification of Dry Bean Varieties Based on Multiple Attributes Using CatBoost Machine Learning Algorithm,” Sci Program, vol. 2023, 2023, doi: 10.1155/2023/2556066.
[8] I. Wardhana, Musi Ariawijaya, Vandri Ahmad Isnaini, and Rahmi Putri Wirman, “Gradient Boosting Machine, Random Forest dan Light GBM untuk Klasifikasi Kacang Kering,” Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), vol. 6, no. 1, 2022, doi: 10.29207/resti.v6i1.3682.
[9] H. Hananti and K. Sari, “Perbandingan Metode Support Vector Machine (SVM) dan Artificial Neural Network (ANN) pada Klasifikasi Gizi Balita,” Seminar Nasional Official Statistics, vol. 2021, no. 1, 2021, doi: 10.34123/semnasoffstat.v2021i1.1014.
[10] E. Matel, F. Vahdatikhaki, S. Hosseinyalamdary, T. Evers, and H. Voordijk, “An artificial neural network approach for cost estimation of engineering services,” International Journal of Construction Management, vol. 22, no. 7, 2022, doi: 10.1080/15623599.2019.1692400.
[11] K. Sinha, Z. Uddin, H. I. Kawsar, S. Islam, M. J. Deen, and M. M. R. Howlader, “Analyzing chronic disease biomarkers using electrochemical sensors and artificial neural networks,” 2023. doi: 10.1016/j.trac.2022.116861.
[12] A. Almomany, W. R. Ayyad, and A. Jarrah, “Optimized implementation of an improved KNN classification algorithm using Intel FPGA platform: Covid-19 case study,” Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, 2022, doi: 10.1016/j.jksuci.2022.04.006.
[13] M. Suyal and P. Goyal, “A Review on Analysis of K-Nearest Neighbor Classification Machine Learning Algorithms based on Supervised Learning,” 2022. doi: 10.14445/22315381/IJETT-V70I7P205.
[14] S. R. Cholil, T. Handayani, R. Prathivi, and T. Ardianita, “Implementasi Algoritma Klasifikasi K-Nearest Neighbor (KNN) Untuk Klasifikasi Seleksi Penerima Beasiswa,” IJCIT (Indonesian Journal on Computer and Information Technology), vol. 6, no. 2, 2021, doi: 10.31294/ijcit.v6i2.10438.
[15] T. A. Q. Putri, A. Triayudi, and R. T. Aldisa, “Implementasi Algoritma Decision Tree dan Naïve Bayes Untuk Klasifikasi Sentimen Terhadap Kepuasan Pelanggan Starbucks,” Journal of Information System Research (JOSH), vol. 4, no. 2, pp. 641–649, Jan. 2023, doi: 10.47065/josh.v4i2.2949.
[16] M. B. Abdul Majid, Y. M. Cani, and U. Enri, “Penerapan Algoritma K-Means dan Decision Tree Dalam Analisis Prestasi Siswa Sekolah Menengah Kejuruan,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 4, no. 2, p. 355, Dec. 2022, doi: 10.30865/json.v4i2.5299.
[17] F. Y. Pamuji and V. P. Ramadhan, “Komparasi Algoritma Random Forest dan Decision Tree untuk Memprediksi Keberhasilan Immunotheraphy,” Jurnal Teknologi dan Manajemen Informatika, vol. 7, no. 1, 2021, doi: 10.26905/jtmi.v7i1.5982.
[18] B. P. Pratiwi, A. S. Handayani, and S. Sarjana, “PENGUKURAN KINERJA SISTEM KUALITAS UDARA DENGAN TEKNOLOGI WSN MENGGUNAKAN CONFUSION MATRIX,” Jurnal Informatika Upgris, vol. 6, no. 2, 2021, doi: 10.26877/jiu.v6i2.6552.
[19] M. Hasnain, M. F. Pasha, I. Ghani, M. Imran, M. Y. Alzahrani, and R. Budiarto, “Evaluating Trust Prediction and Confusion Matrix Measures for Web Services Ranking,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2994222.
[20] G. Zeng, “On the confusion matrix in credit scoring and its analytical properties,” Commun Stat Theory Methods, vol. 49, no. 9, 2020, doi: 10.1080/03610926.2019.1568485.