ANALISIS PERHITUNGAN KERUGIAN DAYA PADA LENDUTAN SERAT OPTIK DENGAN SIMULASI MATLAB

Main Article Content

Joni Welman Simatupang
Faisal Syamsuri
Ria Bramasto
Fajar Choirul Anam
R. Hilary Yoga Ardanta

Abstract

Bending is one of the causes of signal transmission loss through the electromagnetic wave medium in the optical fiber. There are two types of bendinglossess: microbending and macrobending. Both of them occur when the surface of the optical fiber cable experiences external pressure which causes deformation in the core of the optical fiber. Bending causes the loss of the optical transmission power affected by decreased light intensity, therefore the output ratio becomes degraded to the input one. This kind of condition assumed can be utilized for designing the optical fiber-based sensor by observing the response of the optical fiber against the external disturbances or stimulation.One example is the mechanical force that causes the deformation to the optical fiber. Based on the simulation result through the Matlab programming for macrobending loss, it was obtained that the highest power loss at 1.817×10-4 dB/mm on the 10mm bending radius for the 1650nm wavelength, and the lowest at 2.683×10-8 dB/mm on the 20mm bending radius for the 1250 nm wavelength. Meanwhile for microbending loss, it obtained the largest change of transmission coefficient at 59.070% for 100mm spacer length with applied mechanical force as large as 106 dynes or 10N, and the smallest change at 0.591% for 10mm spacer length with applied mechanical force as large as 105 dynes or 1N. These significant changes of the measured values show that the optical fiber, by simulation, is pretty responsive against the external stimulations, either on the macroscopic scale or the microscopic scale. So that based on its responsiveness, we can assume that optical fiber is most likely possible to be utilized in variousmodern fiber optic sensor for many applied technologies

ABSTRAK:

Lendutan atau bending merupakan salah satu penyebab kerugian transmisi sinyal melalui medium gelombang elektromagnetik berupa cahaya melalui pada serat optik. Terdapat dua jenis bending, yaitu macrobending dan microbending. Keduanya adalah tipe lendutan yang terjadi ketika permukaan serat optik mendapat tekanan eksternal yang menyebabkan terjadinya deformasi pada inti serat optik. Lendutan mengakibatkan berkurangnya daya transmisi optik dikarenakan berkurangnya intensitas cahaya, sehingga nilai keluarannya menjadi terdegradasi. Kondisi tersebut diasumsikan dapat dimanfaatkan untuk perancangan sensor berbasis serat optik dengan mengamati respon serat optik terhadap gangguan eksternal. Sebagai contoh berupa gaya mekanis yang menyebabkan serat optik terdeformasi. Berdasarkan hasil simulasi melalui Matlab untuk macrobending, diperoleh kerugian daya tertinggi sebesar 1.817 × 10-4 dB/mm pada radius bending 10 mm untuk panjang gelombang 1650 nm, dan terendah sebesar 2.683 × 10-8 dB/mm pada radius bending 20 mm untuk panjang gelombang 1250 nm. Sementara untuk microbending, diperoleh perubahan koefisien transmisi tertinggi sebesar 59.070% untuk panjang penyekat 100 mm dengan gaya mekanis sebesar 106 dyne atau 10 N, dan terendah sebesar 0.591% untuk panjang penyekat 10 mm dengan gaya mekanis sebesar 105 dyne atau 1 N. Perubahan nilai yang sangat signifikan tersebut menunjukkan bahwa serat optik secara simulasi cukup responsif terhadap stimulasi eksternal, baik dalam skala makro maupun mikro. Berdasarkan sifatnya yang cukup responsif, dapat disimpulkan bahwa serat optik sangat mungkin untuk dimanfaatkan dalam perancangan sistem sensor moderen untuk berbagai aplikasi teknologi.


Article Details

How to Cite
[1]
J. W. Simatupang, F. Syamsuri, R. Bramasto, F. Choirul Anam, and R. H. Y. Ardanta, “ANALISIS PERHITUNGAN KERUGIAN DAYA PADA LENDUTAN SERAT OPTIK DENGAN SIMULASI MATLAB”, TESLA, vol. 24, no. 1, pp. 13–24, Apr. 2022.
Section
Articles

References

G.P. Agrawal, “Fiber-Optic Communication Systems,” ed. 3, John Wiley & Sons, Inc., New York, 2002.

N. Kristoffel, “Total Internal Reflection and the Related Effects,” Proceedings of Tartu State University, No. 42, pp. 94-112, 1956 (Source: https://arxiv.org/pdf/1403.4468.pdf).

https://upload.wikimedia.org/wikipedia/commons/8/8a/ReflexionTotal_en.svg [1 Oktober 2021].

B. Widiyatmoko et al., “Study of Microbending Loss Single Mode Optic Fiber in Sand Powder Against Pressure,” Journal of Technomaterials Physics, vol. 3, no. 1, pp. 65-73, Talenta Publisher, 2021.

“Single Mode vs. Multi-Mode Fiber Optic Cable,” Connectix Cabling System Handbook, Connectix® E&OE, 2016.

Fiber Optic Cable Types – Multimode and Single Mode, RF Industries, San Diego, 2019.

K. Solanki, “Single Mode vs. Multi-Mode Optical Fibre,” Datatronix®, 2018.

https://www.blackbox.co.uk/gb-gb/page/28533/Resources/Technical-Resources/Black-Box-Explains/Fibre-Optic-Cable/Multimode-vs-Singlemode-Fibre [1 September 2021].

Photonics Technical Note #21, Fiber Optics: Fiber Basics, MKS NewportTM, 1970.

D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Amer. B, vol. 66, pp. 216–220, Mar. 1976.

R.T. Schermer dan J.H. Cole, “Improved Bend Loss Formula Verified for Optical Fiber by Simulation and Experiment,” IEEE Journal of Quantum Electronics, vol. 43, no. 10, Oct. 2007.

D. Marcuse, “Field deformation and loss caused by curvature of optical fibers,” J. Opt. Soc. Amer., vol. 66, no. 1, pp. 311–320, Apr. 1976.

D. Bayuwati dan T.B. Waluyo, “Macro-Bending Loss of Single-Mode Fiber Beyond Its Operating Wavelength,” TELKOMNIKA, vol.16, no.1, pp. 142-150, Feb. 2018.

J.A. Jay, “An Overview of Macrobending and Microbending of Optical Fibers,” Corning Incorporated, Dec. 2010.

https://sp-ao.shortpixel.ai/client/q_glossy,ret_img/https://www.timbercon.com/wp-content/uploads/2018/09/Microbends.gif [2 September 2021].

J.W. Simatupang dan S.-L. Lee, “Transfer Matrix Analysis of Backscattering and Reflection Effects on WDM-PON Systems,” Optics Express, vol. 21, no. 23, pp. 27565-27577, 2013.

J.W. Simatupang dan S.-L. Lee, “Theoretical and Simulation Analysis on Potential Impairments in Bidirectional WDM-PONs,” 2012 IEEE 3rd International Conference on Photonics, pp. 61-65, Penang, Malaysia, 1-3 October 2012.

J.W. Simatupang dan S.-C. Lin, “A Study on Rayleigh Backscattering Noise in Single Fiber Transmission PON,” Int. J. Innov. Res. Technol. Sci. vol. 4, no. 3, pp.11-15, 2016.

J.W. Simatupang, “Theoretical Analysis of Backreflections in Bidirectional Wavelength Division Multiplexing-Passive Optical Networks,” Buletin Teknik Elektro dan Informatika (Bulletin of Electrical Engineering and Informatics), vol. 2, no.1, March 2013, pp. 45-52, ISSN: 2089-3191.

J.W. Simatupang, “Simulation and Analysis of Rayleigh Backscattering Effects in 105 Km Long-Reach RSOA-based Hybrid WDM/TDM PON Transmissions,” Teknologi Indonesia, vol. 36, no. 1, pp.1-9, LIPI Press, 2013.

J.W. Simatupang dan P.D. Pukhrambam, “Theoretical Analysis of Single-Fiber Transmission over WDM-PON Systems,” Teknologi Indonesia, vol. 40, no. 2, pp. 87-96, LIPI Press, 2017.

J.W. Simatupang, P.D. Pukhrambam, dan Y.-R. Huang, “Performance analysis of cross-seeding WDM-PON system using transfer matrix method,” Optical Fiber Technology, vol. 32, pp. 50-57, Academic Press, 2016.

N. Lagakos et al., “Microbend Fiber-Optic Sensor,” Appl. Opt., vol. 26, no. 11, pp. 2171-2180, 1987.

R.K. Ula et al., “Design of micro bending deformer for optical fiber weight sensor,” 2nd International Symposium on Frontier of Applied Physics (ISFAP 2016), IOP Publishing, 2017.

Corning® SMF-28e+® Optical Fiber Product Information, Corning Incorporated, 2019.

Paulo Antunes et al., “Mechanical Properties of Optical Fibers,” Instituto de Telecomunicacoes and Departamento de Fisica, Universidade de Aveiro, 2012.

Most read articles by the same author(s)