CONTINUANCE INTENTION OF AI-BASED CHATBOT SERVICES IN HIGHER EDUCATION: EVIDENCE FROM INDONESIA

Main Article Content

Winda Maulidina Nurrohmah
Prio Utomo
Johny Natu Prihanto

Abstract

Chatbot berbasis Kecerdasan Buatan (Artificial Intelligence/AI) semakin banyak digunakan di pendidikan tinggi untuk meningkatkan layanan mahasiswa. Namun, masih sedikit kajian yang meneliti faktor-faktor yang mendorong keberlanjutan penggunaan teknologi ini. Lambatnya response oleh layanan kemahasiswaan mendorong pemahaman lebih dalam mengenai determinan niak belernajutan dalam mempergunakan chatbot berbasi AI dengan menerapkan


kerangka Technology Continuance Theory (TCT). Penelitian ini mempergunakan pendekatan kuantitatif dengan metode sampling purposive dimana data survei dikumpulkan dari 294 mahasiswa dan dianalisis menggunakan Partial Least Squares–Structural Equation Modeling (PLS-SEM). Hasil penelitian menunjukkan bahwa kualitas informasi berpengaruh signifikan terhadap persepsi kemudahan penggunaan, sementara kualitas sistem meningkatkan konfirmasi dan persepsi kegunaan. Namun, kualitas layanan tidak berpengaruh signifikan terhadap persepsi kegunaan. Baik persepsi kegunaan maupun kemudahan penggunaan terbukti berperan penting dalam mendorong niat keberlanjutan penggunaan VARA. Secara teoretis, penelitian ini memperluas penerapan TCT dalam konteks pendidikan tinggi dengan menunjukkan bagaimana kualitas informasi dan kualitas sistem secara bersama-sama membentuk niat keberlanjutan penggunaan. Secara praktis, temuan ini memberikan arahan bagi universitas untuk meningkatkan desain chatbot melalui keakuratan, keandalan, dan kemudahan penggunaan informasi. Penguatan faktor-faktor tersebut sangat penting untuk mendukung transformasi digital yang berkelanjutan dalam layanan mahasiswa.


 


Artificial Intelligence (AI)-based chatbots are increasingly being adopted in higher education to enhance the quality of academic services. However, research on the factors influencing the sustained use of these technologies remains limited. This study aims to identify the determinants of students’ continuance intention to use AI-based chatbots by applying the Technology Continuance Theory (TCT) framework. This quantitative research used a purposive sampling method, where data were collected from 294 students and analyzed using Partial Least Squares structural equation modeling (PLS-SEM). The results indicate that information quality significantly influences perceived ease of use, whereas system quality enhances both confirmation and perceived usefulness. In contrast, service quality had no significant effect on perceived usefulness. Perceived usefulness and ease of use are key factors in shaping students’ intention to continue using chatbots. This study extends the application of TCT in higher education by demonstrating how information and system quality jointly influence continuance intention. In practice, the results can guide universities in improving chatbot design by ensuring accuracy, reliability, and usability. Strengthening these elements is vital for sustaining the digital transformation of student services.

Article Details

Section

Articles

References

Ashfaq, M., Yun, J., Yu, S., & Loureiro, S. M. C. (2020). I, Chatbot: Modeling the determinants of users’ satisfaction and continuance intention of AI-powered service agents. Telematics and Informatics, 54, 101473. https://doi.org/10.1016/j.tele.2020.101473

Chen, J. S., Le, T. T. Y., & Florence, D. (2021). Usability and responsiveness of artificial intelligence chatbot on online customer experience in e-retailing. International Journal of Retail and Distribution Management, 49(11), 1512–1531. https://doi.org/10.1108/IJRDM-08-2020-0312

Chen, Q., Lu, Y., Gong, Y., & Xiong, J. (2023). Can AI chatbots help retain customers? Impact of AI service quality on customer loyalty. Internet Research, 33(6), 2205–2243. https://doi.org/10.1108/INTR-09-2021-0686

DeLone, W. H., & McLean, E. R. (2003). The DeLone and McLean model of information systems success: A ten-year update. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1080/07421222.2003.11045748

Foroughi, B., Huy, T. Q., Iranmanesh, M., Ghobakhloo, M., Rejeb, A., & Nikbin, D. (2025). Why users continue E-commerce chatbots? Insights from PLS-fsQCA-NCA approach. Service Industries Journal, 45(11–12), 935–965. https://doi.org/10.1080/02642069.2024.2371910

Hannan, E., & Liu, S. (2023). AI: new source of competitiveness in higher education. Competitiveness Review: An International Business Journal, 33(2), 265–279. https://doi.org/10.1108/CR-03-2021-0045

Huang, D., Markovitch, D. G., & Stough, R. A. (2024). Can chatbot customer service match human service agents on customer satisfaction? An investigation in the role of trust. Journal of Retailing and Consumer Services, 76, 103600. https://doi.org/10.1016/j.jretconser.2023.103600

Kang, H. (2021). Sample size determination and power analysis using the G*Power software. Journal of Educational Evaluation for Health Professions, 18, 17. https://doi.org/10.3352/jeehp.2021.18.17

Lei, S. I., Shen, H., & Ye, S. (2021). A comparison between chatbot and human service: customer perception and reuse intention. International Journal of Contemporary Hospitality Management, 33(11), 3977–3995. https://doi.org/10.1108/IJCHM-12-2020-1399

Liao, C., Palvia, P., & Chen, J.-L. (2009). Information technology adoption behavior life cycle: Toward a Technology Continuance Theory (TCT). International Journal of Information Management, 29(4), 309–320. https://doi.org/10.1016/j.ijinfomgt.2009.03.004

Novianta, E., Andani, A., . F., & Pane, S. G. (2024). Financial Technology Dan Literasi Keuangan Terhadap Generasi Z. Jurnal Ekonomika Dan Bisnis (JEBS), 4(1), 1–8. https://doi.org/10.47233/jebs.v4i1.1423

Rabaa’i, A. A., & ALMaati, S. A. (2021). Exploring the Determinants of Users’ Continuance Intention to Use Mobile Banking Services in Kuwait : Extending the Expectation-Confirmation Model. Asia Pacific Journal of Information Systems, 31(2), 141–184. https://doi.org/10.14329/apjis.2021.31.2.141

Rahi, S., Khan, M. M., & Alghizzawi, M. (2021). Extension of technology continuance theory (TCT) with task technology fit (TTF) in the context of Internet banking user continuance intention. International Journal of Quality and Reliability Management, 38(4), 986–1004. https://doi.org/10.1108/IJQRM-03-2020-0074

Sosianika, A., Rafdinal, W., & Amalia, F. A. (2024). Exploring Students’ Continuence Intention Toward Artificial Intelligence. Jurnal Riset Dan Inovasi Pembelajaran, 4(3), 1726–1741. https://doi.org/10.51574/jrip.v4i3.2027

Sundjaja, A. M., Utomo, P., & Colline, F. (2025). The determinant factors of continuance use of customer service chatbot in Indonesia e-commerce: extended expectation confirmation theory. Journal of Science and Technology Policy Management, 16(1), 182–203. https://doi.org/10.1108/JSTPM-04-2024-0137

Tata, S. V., Prashar, S., & Parsad, C. (2021). Examining the influence of satisfaction and regret on online shoppers’ post-purchase behaviour. Benchmarking: An International Journal, 28(6), 1987–2007. https://doi.org/10.1108/BIJ-06-2020-0332