MEMPREDIKSI PRODUCTIVITY SCORE BERDASARKAN HOURS PER WEEK
Main Article Content
Abstract
Individual productivity is an important indicator in assessing performance both in the work and educational environment. This research aims to predict productivity scores based on the hours per week variable, namely the number of hours a person spends working per week. Using several approaches using regression methods, we explore the relationship between the number of hours worked per week and productivity levels. The dataset used in this research was taken from Kaggle. The best prediction accuracy is found in the SVR RBF algorithm using training data and test data of 70%:30% and this data is most suitable using SVR RBF using training data and test data of 70%:30%. This research provides insight into the optimal limits of working hours that can support productivity. The best MAE value is using the Linear SVR algorithm with training data and test data of 70%:30% of 8.801. A good RMSE value using the SVR RBF algorithm with training data and test data of 70%:30% is 11.391. The best R2 value is found in SVR RBF with training data and test data of 70%:30% of 0.062. The worst performance, worst prediction accuracy, and least suitable data use the SVR RBF algorithm with training data and test data 50%:50%. The MAE value that has poor performance is the SVR RBF algorithm with training data and test data of 50%:50% of 10.286. The RMSE value which has poor performance uses the SVR RBF algorithm with training data and test data of 50%:50% with a value of 13.046. The R2 value that has poor performance is the SVR RBF algorithm with training data and test data of 50%:50% with a value of 0.017.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under a Jurnal Komunikasi Creative Commons Attribution-ShareAlike 4.0 International License.
References
[1] I. Malikhah, A. P. Nst and G. P. Kaban, "Analisis Kompetensi Sdm Dan Pemanfaatan Teknologi Informasi Terhadap Produktivitas Kerja Pelaku Usaha Di Desa Pematang Serai Kabupaten Langkat," MANEGGIO: Jurnal Ilmiah Magister Manajemen, vol. 6, no. 1, 2023.
[2] J. F. Fau and P. Buulolo, "Pengaruh Lingkungan Kerja terhadap Produktivitas Kerja Pegawai di kantor Samsat Kabupaten Nias Selatan," Remik: Riset dan E-Jurnal Manajemen Informatika Komputer, vol. 7, no. 1, 2023.
[3] A. Umiyati, D. Dasari and F. Agustina, "Peramalan Harga Batubara Acuan," Jurnal EurekaMatika, vol. 9, no. 1, 2021.
[4] R. Z. Rais, M. and A. S. Ahmar, "Implementation of the Support Vector Regression," ARRUS Journal of Mathematics and Applied Science, vol. 4, no. 1, 2024.
[5] R. E. Cahyono, J. P. Sugiono and S. Tjandra, "Analisis Kinerja Metode Support Vector Regression (SVR)," JTIM : Jurnal Teknologi Informasi dan Multimedia, vol. 1, no. 2, 2019.
[6] L. M. Ginting, M. M. Sigiro, E. D. Manurung and J. J. P. Sinurat, "Perbandingan Metode Algoritma Support Vector Regression dan," Journal of Applied Technology and Informatics, vol. 1, no. 2, 2021.
[7] H. Apriyani and K. , "Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus," Journal of Information Technology Ampera, vol. 1, no. 3, 2020.
[8] S. D. Wahyuni and R. H. Kusumodestoni, "Optimalisasi Algoritma Support Vector Machine (SVM) Dalam Klasifikasi Kejadian Data Stunning," Bulletin Of Information Technology (BIT), vol. 5, no. 2, 2024.
[9] S. Rabbani, D. Safitri, N. Ramadhani, A. A. F. Sani and M. K. Anam, "Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM," MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 2, 2023.
[10] M. M. Siregar, R. Hizria and D. Pardede, "Perbandingan Kinerja Kernel SVM dalam Klasifikasi Kategori Kanker Kulit Menggunakan Transfer Learning," DSI: Jurnal Data Science Indonesia, vol. 4, no. 1, 2024.
[11] I. Amansyah, J. Indra, E. Nurlaelasari and A. R. Juwita, "Prediksi Penjualan Kendaraan Menggunakan Regresi Linear:," INNOVATIVE: Journal Of Social Science Research, vol. 4, no. 4, 2024.
[12] S. Sautomo and H. F. Pardede, "PrediksiBelanja Pemerintah Indonesia Menggunakan Long Short-Term Memory (LSTM)," Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi, vol. 5, no. 1, 2021.
[13] D. Dardanella, A. P. Hidayat, S. H. Santosa and R. Siskandar, "PERAMALAN HARGA JUAL CABAI MERAH DI PASAR RAKYAT KEMANG PERUSAHAAN UMUM DAERAH PASAR TOHAGA KABUPATEN BOGOR," Indonesia Journal of Science, vol. 3, no. 1, 2022.
[14] H. Elvaningsih, E. F. Tawakal and M. , "Prediksi Stok Obat Menggunakan Metode Backpropagation," Seminar Nasional Sains dan Teknologi Informasi (SENSASI) , 2021.
[15] M. Muharrom, "Analisis Komparasi Algoritma Data Mining Naive Bayes, K-Nearest Neighbors dan Regresi Linier Dalam Prediksi Harga Emas," Bulletin Of Information Technology (BIT), vol. 4, no. 4, 2023.
[16] A. T. Nurani, A. Setiawan and B. Susanto, "Perbandingan Kinerja Regresi Decision Tree dan Regresi Linear Berganda," Jurnal Sains dan Edukasi Sains, vol. 6, no. 1, 2023.
[17] R. E. E. L. Lubis, A. Priansyah, Y. R. W. N. and T. Meutia, "PENERAPAN DATA MINING UNTUK MEMPREDIKSI HARGA BAHAN PANGAN DI INDONESIA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR," JURNAL MAHASISWA AKUNTANSI SAMUDRA (JMAS), vol. 4, no. 4, 2023.
[18] A. D. Milniadi and N. O. Adiwijaya, "ANALISIS PERBANDINGAN MODEL ARIMA DAN LSTM DALAM PERAMALAN HARGA PENUTUPAN SAHAM (STUDI KASUS: 6 KRITERIA KATEGORI SAHAM MENURUT PETER LYNCH)," Jurnal Ilmiah Bidang Sosial, Ekonomi, Budaya, Teknologi, dan Pendidikan, vol. 2, no. 6, 2023.
[19] A. Harun and N. N. A. Salmah, "Determinan Keputusan Pembelian Pelanggan Berdasarkan Kepercayaan dan Kemudahan Melalui Aplikasi Shopee," Jurnal Media Wahana Ekonomika, vol. 17, no. 2, 2020.
[20] H. N. Febriani and M. Annas, "Determinasi Minat Beli Ulang Konsumen Pada Aplikasi TikTok," Dynamic Management Journal , vol. 7, no. 1, 2023.