POTENSI PEMANFAATAN PUNA DAN KAMERA HIPERSPEKTRAL DALAM PENINDAKAN LADANG GANJA DI DAERAH TERPENCIL

Ade Purwanto
| Abstract views: 91 | views: 48

Abstract

Cannabis has been a major problem regarding drugs abuse in the world, especially in the South East Asia. This study offers a potential solution to increase the effectiveness of Cannabis control in remote areas using time and cost-effective method by applying RPAS and a hyperspectral camera in the program. RPAS will be the platform to airborne the hyperspectral camera in order to identify potential Cannabis plantation so that a measured appropriate handling could be executed. BPPT has developed several tactical RPASs with an operating radius range up to 150km and a flight endurance up to 6 hours. The platform is capable of carrying mission-specific payloads and obtaining data in real-time and at low cost. Plants identification was determined using Hyperspectral camera with wavelength between 400 to 900 nm. Indoor and outdoor measurement was done. The study shows that the hyperspectral camera was capable of classifying target plant out of the others. The study shows that combination of RPAS and hyperspectral technology would be able to determine the particular spectral signature of the cannabis with the highest result compared to other methods available in Indonesia

 

ABSTRAK:

Penyalahgunaan Ganja telah menjadi salah satu masalah utama mengenai narkoba di dunia, terutama di Asia Tenggara. Studi ini menawarkan solusi potensial untuk meningkatkan efektivitas pengendalian Ganja di daerah terpencil dengan menggunakan metoda, waktu dan biaya yang efektif dengan melibatkan teknologi PUNA dan kamera hiperspektral dalam program tersebut. PUNA digunakan untuk menerbangkan sensor hiperspektral untuk kemudian melakukan identifikasi lading Ganja, sehingga dapat dilakukan penanganan yang tepat. BPPT telah berhasil mengembangkan beberapa PUNA taktikal dengan jangkauan radius operasi hingga 150km dan ketahanan terbang hingga 6 jam. Platform ini mampu membawa payload spesifik untuk misi dan mendapatkan data secara real-time dan berbiaya rendah. Identifikasi tanaman dilaksanakan menggunakan sensor hiperspectral milik BPPT dengan panjang gelombang antara 400 sampai 900 nm. Pengambilan data dalam ruangan tertutup dan di ruangan terbuka juga telah dilakukan. Hasil studi tersebut menunjukkan bahwa kamera hiperspektral mampu mengklasifikasikan tanaman yang telah ditentukan dari tanaman lainnya. Studi tersebut menunjukkan bahwa kombinasi teknologi PUNA dan hiperspektral ini akan dapat menentukan tanda spektral tertentu dari ganja dengan hasil yang paling optimal dibandingkan dengan berbagai metoda lain yang ada di Indonesia.

Full Text:

PDF

References

Tim Penyusun KBBI, Kamus Bahasa Indonesia, xvi., vol. xvi. Jakarta, 2008.

“Management of substance abuse; Cannabis,” WHO, 2020. [Online]. Available: https://www.who.int/substance_abuse/facts/cannabis/en/. [Accessed: 17-Sep-2020].

UNODC, Cannabis and hallucinogens, E.19.XI.8. Vienna: United Nation Publication, 2019.

M. Kanato, P. Leyatikul, C. Choomwattana, and I. Thepwongsa, “ASEAN drug monitoring report 2015,” ASEAN-NARCO, Bangkok, 2016.

T. M. Koot, “Weed detection with Unmanned Aerial Vehicles in agricultural systems,” Wageningen University, 2014.

C. M. Gevaert, “Generation of STRS by combining hyperspectral UAV and multispectral satellite and hyperspectral UAV imagery for precision agriculture application.,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 8, no. 6, pp. 3140–3146, 2015.

T. Ishida et al., “A novel approach for vegetation classification using UAV-based hyperspectral imaging,” Comput. Electron. Agric., vol. 144, no. December 2017, pp. 80–85, 2018.

T. Takayama et al., “Validation of BIPLS for Improving Yield Estimation of Rice Paddy from Hyperspectral Data in West Java , Indonesia,” IGARSS 2012, pp. 6581–6584, 2012.

D. Arief et al., “Development of hyperspectral data utilization technology by using data mining method for paddy, West Java, Indonesia,” 31st Asian Conf. Remote Sens. 2010, ACRS 2010, vol. 2, pp. 1259–1264, 2010.

C. L. Walthall and C. S. T. Daughtry, “Development of Cannabis Spectral Signatures And Cannabis Growth Simulation Model,” Beltsville, 2003.

I. Azaria, N. Goldschleger, and E. Ben-Dor, “Identification of Cannabis plantations using hyperspectral technology,” Isr. J. Plant Sci., vol. 60, no. 1–2, pp. 77–83, 2012.

B. Thiessen, “Technical Report Satellite Detection of Cannabis sativa Outdoor Grow Operations,” Ottawa, 2007.

I. Azaria, N. Goldshleger, E. Ben-Dor, and R. Bar-Hamburger, “Detection of cannabis plants by hyper-spectral remote sensing means,” Isr. J. Plant Sci., vol. 60, no. 1, pp. 77–83, 2012.

M. Houmi, B. Mohamadi, and T. Balz, “A hyperspectral based method to detect cannabis plantation in inaccessible areas,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 3, pp. 547–551, 2018.

J. F. Q. Pereira, M. F. Pimentel, J. M. Amigo, and R. S. Honorato, “Detection and identification of Cannabis sativa L. using near infrared hyperspectral imaging and machine learning methods. A feasibility study,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 237, p. 118385, 2020.

W. S. Holmes et al., “Classifying cannabis sativa flowers, stems and leaves using statistical machine learning with near-infrared hyperspectral reflectance imaging,” I2MTC 2020 - Int. Instrum. Meas. Technol. Conf. Proc., pp. 1–6, 2020.

“ENVISVMClassifier,” Harrisgeospatial, 2020. [Online]. Available: https://www.harrisgeospatial.com/docs/envisvmclassifier.html. [Accessed: 17-Sep-2020].

Y. Guno, D. H. Budiart, and D. Raharjo, “Pemanfaatan Pesawat Udara Nir Awak (PUNA) Alap-Alap untuk Pemantauan Gunung Berapi,” Maj. Ilm. Pengkaj. Ind., vol. 11, no. October, 2017.

Copyright (c) 2021 TESLA: Jurnal Teknik Elektro
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.