ANALYSIS OF THE IMPACT OF VOLTAGE IMBALANCE ON THE PERFORMANCE OF A MICROCONTROLLER-BASED CAGE ROTOR INDUCTION MOTOR

Main Article Content

Abdullah Avif Putra Buana
Ruskardi
Rianda

Abstract

The three-phase induction motor is the most widely used alternating current (AC) electric motor in industrial applications, particularly for driving large-capacity loads. Its flexibility, efficiency, and ability to operate reliably under harsh environmental conditions make it the preferred choice in manufacturing, processing, and mining sectors, with an estimated 70% share of all industrial electric machines. However, one common technical issue encountered in the field is three-phase supply voltage unbalance. Even a small percentage of voltage unbalance can lead to increased phase current, torque fluctuations, higher operating temperatures, reduced efficiency, and instability in the overall power system. This study aims to analyze the impact of voltage unbalance on the performance of a squirrel-cage induction motor using a microcontroller-based monitoring system. Laboratory experiments were conducted by varying the degree of voltage unbalance in accordance with the NEMA MG 1-1993 standard. The monitoring system was designed with a microcontroller integrated with voltage and current sensors, enabling real-time data acquisition. The measured parameters included current, speed, slip, torque, and efficiency. Experimental results indicate that increasing the voltage unbalance from 0.53% to 5.22% led to a 4–7-fold increase in current unbalance, a slip rise of approximately 2%, and a reduction in efficiency from 90% to 82%. These findings demonstrate a direct correlation between supply voltage quality and motor performance. The results emphasize that controlling voltage unbalance—whether through proper distribution system maintenance or the use of compensation devices—is essential to maintaining optimal performance and extending the service life of three-phase induction motors in industrial environments.


Motor induksi tiga fasa merupakan motor listrik arus bolak-balik (AC) yang paling banyak digunakan di industri, terutama sebagai penggerak beban berkapasitas besar. Fleksibilitas, efisiensi, dan ketahanannya terhadap kondisi lingkungan yang berat menjadikannya pilihan utama pada sektor manufaktur, pengolahan, dan pertambangan, dengan estimasi penggunaan mencapai 70% dari seluruh mesin listrik industri. Namun, salah satu permasalahan teknis yang sering ditemui di lapangan adalah ketidakseimbangan tegangan suplai tiga fasa. Ketidakseimbangan ini, meskipun hanya beberapa persen, dapat memicu kenaikan arus fasa, fluktuasi torsi, peningkatan suhu operasi, penurunan efisiensi, dan gangguan kestabilan sistem tenaga listrik. Penelitian ini bertujuan menganalisis dampak ketidakseimbangan tegangan terhadap performa motor induksi rotor sangkar menggunakan sistem monitoring berbasis mikrokontroler. Pengujian dilakukan di laboratorium dengan memvariasikan ketidakseimbangan tegangan sesuai standar NEMA MG 1-1993. Sistem monitoring dirancang menggunakan mikrokontroler yang terintegrasi dengan sensor tegangan dan arus, sehingga mampu merekam data secara real-time. Parameter yang diukur meliputi arus, kecepatan, slip, torsi, dan efisiensi. Hasil pengujian menunjukkan bahwa peningkatan ketidakseimbangan tegangan dari 0,53% hingga 5,22% menyebabkan ketidakseimbangan arus hingga 4–7 kali lipat, kenaikan slip sekitar 2%, serta penurunan efisiensi dari 90% menjadi 82%. Dampak ini menunjukkan korelasi langsung antara kualitas tegangan suplai dan kinerja motor. Temuan ini menegaskan bahwa pengendalian ketidakseimbangan tegangan, baik melalui pemeliharaan sistem distribusi maupun penggunaan perangkat kompensasi, sangat penting untuk mempertahankan performa optimal dan memperpanjang umur pakai motor induksi tiga fasa di lingkungan industri.

Article Details

How to Cite
[1]
Abdullah Avif Putra Buana, Ruskardi, and Rianda, “ANALYSIS OF THE IMPACT OF VOLTAGE IMBALANCE ON THE PERFORMANCE OF A MICROCONTROLLER-BASED CAGE ROTOR INDUCTION MOTOR”, TESLA, vol. 27, no. 2, pp. 70–80, Aug. 2025.
Section
Articles

References

[1] P. Harahap, “PENGARUH JATUH TEGANGAN TERHADAP KERJA MOTOR INDUKSI TIGA FASA MENGGUNAKAN SIMULINK MATLAB,” Media Elektrika, vol. 9, no. 2, 2016, doi: https://doi.org/10.26714/me.v9i2.2440.

[2] I. N. B. I Made Parsa, Motor-Motor Listrik untuk Mahasiswa dan Umum, 1st ed. in 1. Jakarta: CV. Rasi Terbit, 2018. [Online]. Available: https://www.researchgate.net/publication/323986635

[3] M. Z. Kurnia, I. M. W. Kastawan, and P. Raharjo, “Pengaruh ketidakseimbangan tegangan pada suplai daya listrik terhadap kecepatan putaran dan efisiensi motor induksi 3-fasa,” JITEL, vol. 3, no. 2, pp. 155–164, Aug. 2023, doi: 10.35313/jitel.v3.i2.2023.155-164.

[4] M. Saifudin, S. Suryono, and I. Irianto, “Monitoring and Protection System for Overvoltage, Undervoltage and Unbalance Voltage,” JurnalEcotipe, vol. 9, no. 2, pp. 159–165, Oct. 2022, doi: 10.33019/jurnalecotipe.v9i2.3092.

[5] A. Kamal and S. Bandri, “ANALISA PENGARUH KETIDAKSEIMBANGAN TEGANGAN MOTOR INDUKSI 3 FASA MENGGUNAKAN MATLAB SIMULINK,” RTJ, vol. 6, no. 2, pp. 167–175, May 2023, doi: 10.31869/rtj.v6i2.4154.

[6] B. Sahrul Lesmana, Pengaruh Arus Tidak Seimbang Terhadap Kerja Motor Induksi Tiga Fasa. in Tesis. Universitas Sumatera Utara: Repositori Institusi Universitas Sumatera Utara (RI-USU), 2018. [Online]. Available: https://repositori.usu.ac.id/handle/123456789/9640

[7] NEMA, ANSI/NEMA MG 1-2016 (Revision 1, 2018) Motors and Generators. in Section IV Performance Standards Applying to All Machines Part 31 Definite Purpose Inverter-Fed Polyphase Motors. Rosslyn, Virginia 22209: National Electrical Manufacturers Association, 2021. [Online]. Available: www.nema.org

[8] M. Altaira and A. Issa, “A Comparative Study of the Effect of Voltage Unbalance and Sinlge Phasing on Three Phase Induction Motor Characteristics,” in 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), Benghazi, Libya: IEEE, May 2023, pp. 771–776. doi: 10.1109/MI-STA57575.2023.10169628.

[9] M. Muhammad, E. Yuniarti, S. Sofiah, A. Saputra, and A. Pani, “Performa Motor Induksi Satu Phasa Sebagai Penggerak Mesin Pengering,” jtekno, vol. 18, no. 2, pp. 1–10, Nov. 2021, doi: 10.33557/jtekno.v18i2.1469.

[10] A.H. Abed, J. Rahebi, H. Sajir, A. Farzamnia, “Protection of sensitive loads from voltages fluctuations in Iraqi grids by DVR,” in IEEE 2nd Int. Conf. on Automatic Control and Intelligent Systems (I2CACIS), 2017 IEEE 2nd International Conference on Automatic Control and Intelligent Systems (I2CACIS), Oct. 2017. doi: 10.1109/I2CACIS.2017.8239048.

[11] T. H. Atyia, “Control Techniques of Torque Ripple Minimization for Induction Motor,” Tikrit j. eng. sci., vol. 25, no. 4, pp. 57–63, Dec. 2018, doi: 10.25130/tjes.25.4.10.

[12] J. A.-K. Mohammed, S. R. Al-Sakini, and A. A. Hussein, “Assessment of disturbed voltage supply effects on steady-state performance of an induction motor,” IJECE, vol. 10, no. 3, p. 2259, Jun. 2020, doi: 10.11591/ijece.v10i3.pp2259-2270.

[13] Irawati Bursa, ANALISIS RUGI-RUGI DAYA AKIBAT KETIDAKSEIMBANGAN BEBAN PADA JARINGAN DISTRIBUSI SEKUNDER DI PT. PLN (PERSERO) ULP WATANG SAWITTO, Skripsi. in 1. PROGRAM STUDI D-4 TEKNIK LISTRIK JURUSAN TEKNIK ELEKTRO POLITEKNIK NEGERI UJUNG PANDANG MAKASSAR, 2021. [Online]. Available: https://repository.poliupg.ac.id/id/eprint/9277/1/Analisis%20Rugi-Rugi%20Daya%20Akibat%20Ketidakseimbangan%20Beban%20Pada%20Jaringan%20Distribusi%20Sekunder%20Di%20Pt.%20Pln%20%28Persero%29.pdf

[14] Prasetyo, B., B., Wahyu, S, and Setiawan, D, “Sistem Pendinginan untuk Motor Induksi: Dampak terhadap Umur dan Kinerja,” Jurnal Teknologi dan Rekayasa, vol. 8, no. 3, pp. 78–85, 2022.

[15] Y. Supri Hardi, “Peredaman Harmonisa dan Perbaikan Faktor Daya Aplikasi Beban Rumah Tangga,” Jurnal Litek, vol. 10, no. 1, pp. 35–42, 2013.

[16] T. W. Nugroho, I. Mustaqim, and A. Sandria Jaya Wardhana, “STUDI KUALITAS DAYA LISTRIK (POWER QUALITY) DI BANGUNAN GEDUNG XYZ,” JITET, vol. 13, no. 2, Apr. 2025, doi: 10.23960/jitet.v13i2.6563.

[17] I. A. Ibrahim and M. J. Hossain, “Low Voltage Distribution Networks Modeling and Unbalanced (Optimal) Power Flow: A Comprehensive Review,” IEEE Access, vol. 9, pp. 143026–143084, 2021, doi: 10.1109/ACCESS.2021.3120803.

[18] M. Rosyidi, Sukendro Broto Sasongko, and Yuliyanto Agung Prabowo, “Analisa Pengaruh Ketidakseimbangan Tegangan Terhadap Motor Induksi Penggerak Hoisting Pada Portal Crane 30 Ton,” Seminar Nasional Sains dan Teknologi Terapan XII 2024 Institut Teknologi Adhi Tama Surabaya, 2024, [Online]. Available: https://ejournal.itats.ac.id/sntekpan/article/view/6609

[19] A. Kurniawan, Analisa Ketidakseimbangan Arus Starting Soft Starter Pada Motor Induksi Tiga Fasa di PT Krakatau Tirta Industri, 1st ed., vol. 1. in Skripsi, vol. 1. Serang: JURUSAN TEKNIK ELEKTRO FAKULTAS TEKNIK UNIVERSIVERSITAS SULTAN AGENG TIRTAYASA, 2025. [Online]. Available: https://eprints.untirta.ac.id/46919/1/Ari%20Kurniawan_3332200094_Fulltext.pdf

[20] I. M. W. Kastawan, P. Raharjo, and M. Z. Kurnia, “Effect of voltage supply unbalance on temperature distribution of three-phase induction motor,” E3S Web of Conf., vol. 479, p. 01005, 2024, doi: 10.1051/e3sconf/202447901005.

[21] P. Gnaciński, M. Pepliński, A. Muc, and D. Hallmann, “Induction Motors Under Voltage Unbalance Combined with Voltage Subharmonics,” Energies, vol. 17, no. 24, p. 6324, Dec. 2024, doi: 10.3390/en17246324.

[22] A. Touil and F. Babaa, “Studying of Unbalanced Supply Voltage Effects on Three-Phase Induction Motor Performances Based on Line Neutral Voltage Analytical Calculation,” in Proceedings of the 5th International Conference on Electrical Engineering and Control Applications–Volume 1, vol. 1147, S. Ziani, M. Chadli, S. Bououden, and I. Zelinka, Eds., in Lecture Notes in Electrical Engineering, vol. 1147. , Singapore: Springer Nature Singapore, 2024, pp. 455–467. doi: 10.1007/978-981-97-0045-5_41.

[23] N. Y. Do and X. C. Ngo, “Effects of Voltage Unbalance on Matrix Converter Induction Motor Drive,” in Advances in Engineering Research and Application, vol. 602, D. C. Nguyen, N. P. Vu, B. T. Long, H. Puta, and K.-U. Sattler, Eds., in Lecture Notes in Networks and Systems, vol. 602. , Cham: Springer International Publishing, 2023, pp. 468–476. doi: 10.1007/978-3-031-22200-9_53

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.