PREDIKSI PERSETUJUAN PINJAMAN BANK MENGGUNAKAN METODE RANDOM FOREST
Main Article Content
Abstract
With the current growth in the banking sector, the demand for loans in banks is increasing. However, the challenge faced by banks in providing loans is assessing whether individuals can repay the loan or default on it. This research will collect data such as income, credit score, employment status, loan tenure, loan amount, asset value, and loan status of loan applicants. Subsequently, using the Decision Tree, Random Forest, and Logistic Regression algorithms, their highest evaluation values will be compared. The aim of this research is to predict, with machine learning algorithms, whether loan applicants are eligible for a loan or not. The research stages involve Data Understanding, Feature Extraction, Data Pre-Processing, Modeling, and insight analysis. From the conducted research, after the comparison with the algorithms used, the Random Forest algorithm yielded the highest value compared to other algorithms, with an accuracy value of 0.978.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] Futaqi, F. A. dan Susanti, L. D. (2022). Dampak Pinjaman Bank Thithil pada Ekonomi Rumah Tangga W. SETARA: Jurnal Studi Gender dan Anak, 131-142.
[2] Madaan, M., Kumar, A., Keshri, C., Jain, R., dan Nagrath, P. (2021). Loan default prediction using decision trees and random forest: A comparative study. IOP Conference Series: Material Science and Engineering (hal. 012042). IOP Publishing.
[3] Aslam, U., Aziz, H. I. T., Sohail, A., dan Batcha, N. K. (2019). An empirical study on loan default prediction models. Journal of Computational and Theoretical Nanoscience, 3483-3488.
[4] Kurniawan, A. dan Patria, H. (2022). Pemilihan Metode Predictive Analytics dengan Machine Learning untuk Analisis dan Strategi Peningkatan Kualitas Kredit Perbankan. Indonesian Journal of Applied Statistics, 1-11.
[5] Setiawan, N., Suharjito, and Diana. (2019). A Comparison of Prediction Methods for Credit Default on Peer to Peer Lending using Machine Learning. 4th International Conference on Computer Science and Computational Intelligence (hal. 38-45). Procedia Computer Science.
[6] Tejaswini, J., Kavya, M., Ramya, R. D. N., Triveni, P. S. dan Maddumala, V. R. (2020). Accurate Loan Approval Prediction Based On Machine Learning Approach. Journal of Enginnering Sciences, 523-532.
[7] Patibandla, R. S. M. L., and Veeranjaneyulu, N. (2018). Performance Analysis of Partition and Evolutionary Clustering Methods on Various Cluster Validation Criteria. Arab J Sci Eng, 4379-4390.
[8] Sanjaya, J., Renata, E., Budiman, V. E., Anderson, F., dan Ayub, M. (2020). Prediksi Kelalaian Pinjaman Bank Menggunakan Random Forest dan Adaptive Boosting. JuTISI (Jurnal Teknik Informatika dan Sistem Informasi, 50-60.
[9] Lin, Z., Qiu, D., Ergu, D., Cai, Y., dan Liu, K. (2019). A Study on Predicting Loan Default Based on the Random Forest Algorithm. Procedia Computer Science, 503-513.
[10] Roihan, A., Sunarya, P. A., dan Rafika, A. S. (2020). Pemanfaatan Machine Learning dalam Berbagai Bidang. Jurnal Khatulistiwa Informatika, 75-82.
[11] Yuelin, W., Zhang, Y., Lu, Y., dan Yu, X. (2020). A Comparative Assessment of Credit Risk Model Based on Machine Learning a Case Study of Bank Loan Data. Procedia Computer Science, 141- 149.
[12] Lin, Z., Qiu, D., Ergu, D., Cai, Y., dan Liu, K. (2019). A Study on Predicting Loan Default Based on the Random Forest Algorithm. Procedia Computer Science, 503-513.
[13] Sari, Y. P., Primajaya, A. dan Irawan, A. S. Y. (2020). Implementasi Algoritma K-Means untuk Clustering Penyebaran Tuberkulosis di Kabupaten Karawang. INOVTEK Polbeng-Seri Informatika, 229- 239.
[14] Simarmata, K. B. dan Hartomo K. D. (2022). Analisa Rekomendasi Fitur Persetujuan Pinjaman Perusahaan Financial Technology Menggunakan Metode Random Forest . JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 2055-2070.
[15] Religia, Y., Rusdi, A., Romli, I., dan Mazid, A. (2019). Religia, Y., Rusdi, A.,Feature Extraction Untuk Klasifikasi Pengenalan Wajah Menggunakan Support Vector Machine Dan K-Nearest Neighbor. Pelita Teknologi, 85-92.
[16] Syafi'i, Nurdiawan, O., dan Dwilestari, G. (2022). Penerapan Machine Learning Untuk Menentukan Kelayakan Kredit Menggunakan Metode Support Vektor Machine. Jurnal Sistem Informasi dan Manajemen, 108-113.
[17] Pramakrisna, F. D., Adhinata, F. D., dan Tanjung, N. A. F. (2022). Aplikasi Klasifikasi SMS Berbasis Web Menggunakan Algoritma Logistic Regression. Teknika, 90-97.
[18] Nasrullah, A. H. (2021). Implementasi Algoritma Decision Tree Untuk Klasifikasi Produk Laris. Jurnal Ilmiah Ilmu Komputer, 45-51.
[19] Markoulidakis, I., Kopsiaftis, G., Rallis, I., dan Georgoulas, I. (2021). Multi-Class Confusion Matrix Reduction method and its application on Net Promoter Score classification problem. The 14th pervasive technologies related to assistive environments conference, 412-419.
[20] Heydarian, M., Doyle, T. E., & Samavi, R. (2022). MLCM: Multi-label confusion matrix. IEEE Access, 10, 19083-19095.
[21] Kadam, A. S., Nikam, S. R., Aher, A. A. dan Shelke, G. V. (2021). Prediction for Loan Approval using Machine Learning Algorithm. International Research Journal of Engineering and Technology (IRJET), 4089-4092.