KLASIFIKASI BINTANG KATAI DAN RAKSASA DENGAN METODE K-NN DAN DECISION TREE
Main Article Content
Abstract
Stars are celestial objects that emit light at night. Stars have several properties such as brightness and temperature based on color. These properties can be used for classification and the most commonly used are the Harvard classification and the Morgan-Keenan classification. Both classifications can be used to classify the size of a star as a dwarf or giant star. With so many stars to classify, manual classification can take a lot of time. Therefore, in this study, the K-NN and Decision Tree algorithms are used to determine the accuracy of the classification of dwarf and giant stars. The dataset used in this study comes from the Gaia DR3 and Hipparcos and Tycho catalogues. A total of 25182 rows or records were used. The composition of experiments performed in this study is 80% training data and 20% test data (80/20) and 60% training data and 20% test data (60/20). Experiments were conducted 10 times by randomizing datasets for training data and test data. The average accuracy value obtained with Decision Tree is 81.5% for 80/20 composition and 60/40 composition. Meanwhile, with K-NN, the average accuracy value is 80.9% for the 80/20 composition and 81.1% for the 60/40 composition.
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] A. A. Bustari, R. B. Pratama dan C. J. Al-Aryachiyah, “Analisis Tingkat Polusi Cahaya Berdasarkan Light Pollution Map Dan Implikasinya Terhadap Pengamatan Astronomi Indonesia,” dalam Kalijaga Innovation and Research Technologies Conference 7, Sleman, 2022.
[2] A. M. Rahmadhan, A. Marlina dan U. Mustaqimah, “KONSEP PENANGGULANGAN POLUSI CAHAYA PADA OBSERVATORIUM BINTANG DI KABUPATEN KARANGANYAR,” Senthong, vol. 6, no. 3, pp. 1045-1054, 2023.
[3] P. Protte dan S. M. Hoffmann, “Accuracy of magnitudes in pre-telescopic star catalogs,” Astronomische Nachrichten, pp. 827-840, 2020.
[4] Sutrisno dan T. J. R. Fadilla, “Identification and Determining The Pseudo Magnitude Of Meissa Star Based on Observation Data From The Eastern Sky In The Mentigen Hills of The Pseudo Magnitude of Meissa Star Based on Observation Data From The Eastern Sky,” dalam The 10th National Physics Seminar (SNF 2021), Jakarta, 2021.
[5] S. A. A. Albakri, M. N. A. Hussien dan H. Herdan, “Measurement of the distance to the central stars of Nebulae by using Expansion methods with Alladin Sky Atlas,” dalam 1st International Conference in Physical Science and Advance Materials, Istanbul, 2020.
[6] M. S. Devetaković, Đ. D. Đorđević, G. D. Đukanović, A. D. Krstić-Furundžić, B. S. Sudimac dan A. Scognamiglio, “Design of Solar Systems for Buildings and Use of BIM Tools: Overview of Relevant Geometric Aspects,” FME Transactions, vol. 47, no. 2, pp. 387-397, 2019.
[7] J. McKinney, L. Armus, A. Pope, T. Díaz-Santos, V. Charmandaris, H. Inami, Y. Song dan A. S. Evans, “Regulating Star Formation in Nearby Dusty Galaxies: Low Photoelectric Efficiencies in the Most Compact Systems,” The Astrophysical Journal, vol. 908, no. 2, pp. 1-11, 2021.
[8] A. Serenelli, R. D. Rohrmann dan M. Fukugita, “Nature of blackbody stars,” Astronomy & Astrophysics (A&A), vol. 623, pp. 1-7, 2019.
[9] T. S. Kuhn, Black-Body Theory and the Quantum Discontinuity, 1894-1912, Chicago: University of Chicago Press, 1987.
[10] H. Zhang, Z. Huang, M. Ding, Q. Wang, Y. Feng, Z. Li, S. Wang, L. Yang, S. Chen, W. Shang, J. Zhang, T. Deng, H. Xu dan K. Cui, “A photon-recycling incandescent lighting device,” Science Advances, vol. 9, no. 15, pp. 1-8, 2023.
[11] M. Surace, E. Zackrisson, D. J. Whalen, T. Hartwig, S. C. O. Glover, T. E. Woods and A. Heger, "On the detection of supermassive primordial stars – II. Blue supergiants," Monthly Notices of the Royal Astronomical Society, vol. 488, no. 3, pp. 3995-4003, 2019.
[12] D. R. B. dan M. Badi, “Non-Contact Temperature Measurement Applicable for Covid-19,” Journal of Advancement in Electronics Design, vol. 5, no. 2, pp. 1-14, 2022.
[13] PhET - University of Colorado Boulder, “Blackbody Spectrum,” [Online]. Available: https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum_all.html. [Diakses 1 Mei 2024].
[14] D. Deng, Y. Sun, M. Jian, B. Jiang dan H. Yuan, “Intrinsic Color Indices of Early-type Dwarf Stars,” The Astronomical Journal, vol. 159, no. 5, pp. 1-11, 2020.
[15] J. Airey dan U. Eriksson, “Unpacking the Hertzsprung-Russell Diagram: A Social Semiotic Analysis of the Disciplinary and Pedagogical Affordances of a Central Resource in Astronomy,” Designs for Learning, vol. 11, no. 1, pp. 99-107, 2019.
[16] C. Dafonte, A. Rodríguez, M. Manteiga, Á. Gómez dan B. Arcay, “ A Blended Artificial Intelligence Approach for Spectral Classification of Stars in Massive Astronomical Surveys,” Entropy, vol. 22, no. 5, pp. 1-26, 2020.
[17] S. J. Dick, “Astronomy’s Three Kingdom System: A Comprehensive Classification System of Celestial Objects,” Knowledge Organization, vol. 46, no. 6, pp. 460-466, 2019.
[18] G. Banerjee, “Spectroscopy: The Tool to Study the Stars,” Mapana – Journal of Sciences, vol. 20, no. 4, pp. 9-31, 2021.
[19] D. Huppenkothen, J. Pampin, J. R. A. Davenport dan J. Wenlock, “The Sonified Hertzsprung-Russell Diagram,” dalam 28th ICAD 2023 Conference, Norrköping, 2023.
[20] P. Cunningham dan S. J. Delany, “k-Nearest Neighbour Classifiers - A Tutorial,” ACM Computing Surveys, vol. 54, no. 6, pp. 1-25, 2021.
[21] N. Ali, D. Neagu dan P. Trundle, “Evaluation of k nearest neighbour classifier performance for heterogeneous data sets,” SN Applied Sciences, vol. 1, no. 1559, 2019.
[22] S. Uddin, I. Haque, H. Lu, M. A. Moni dan E. Gide, “Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction,” Scientific Reports, vol. 12, no. 6256, pp. 1-12, 2022.
[23] I. D. Mienye, S. Y. dan Z. Wang, “Prediction performance of improved decision tree-based algorithms: a review,” dalam 2nd International Conference on Sustainable Materials Processing and Manufacturing (SMPM 2019), 2019.
[24] I. Setiawati, A. Permana dan A. Hermawan, “IMPLEMENTASI DECISION TREE UNTUK MENDIAGNOSIS PENYAKIT LIVER,” Journal of Information System Management (JOISM), vol. 1, no. 1, pp. 13-17, 2019.
[25] A. Izyuddin dan S. Wibisono, “APLIKASI PREDIKSI PENJUALAN ACMENGGUNAKAN DECISION TREE DENGAN ALGORITMA C4.5,” Jurnal Manajemen Informatika dan Sistem Informasi (MISI), vol. 3, no. 2, pp. 146-156, 2020.
[26] M. A. Friedl dan C. E. Brodley, “Decision tree classification of land cover from remotely sensed data,” Remote Sensing of Environment, vol. 61, no. 3, pp. 399-409, 1997.
[27] I. M. K. Karo dan Hendriyana, “KLASIFIKASI PENDERITA DIABETES MENGGUNAKAN ALGORITMA MACHINE LEARNING DAN Z-SCORE,” Jurnal Teknologi Terpadu, vol. 8, no. 2, pp. 94-99, 2022.
[28] Gaia Collaboration, T. Prusti, J.H.J. de Bruijne, et al., “The Gaia mission,” A&A 595, pp. A1, 2016b.
[29] Gaia Collaboration, A. Vallenari, A. G. A. Brown, et al., “Gaia Data Release 3. Summary of the content and survey properties,” A&A 674, pp. A1, 2023j.