KLASIFIKASI KUALITAS APEL DENGAN PERBANDINGAN MENGGUNAKAN ALGORITMA ANN DAN SVM PADA DATASET APPLE QUALITY

Main Article Content

Naswa Azahra

Abstract

Apple quality is an important factor in the agricultural and food distribution industries, influencing product sales data and consumer satisfaction. Classification methods such as Artificial Neural Network (ANN) and Support Vector Machine (SVM) are used to predict apple quality automatically, increasing the efficiency of quality assessment. This research compares the performance of ANN and SVM in apple quality classification using a dataset that includes physical attributes and quality categories. ANN uses a feedforward neural network with backpropagation, while SVM uses Linear, Radial Basis Function (RBF) and Polynomial kernels with hyperparameter optimization. By testing both methods on the same dataset, this research provides an overview of the efficiency and performance of each method, as well as providing a basic overview for selecting a classification method that is suitable for the apple dataset. The results can help farmers and producers accurately predict apple quality, minimize losses and increase product added value.

Article Details

Section

Articles

References

[1] C. Suryanti and M. G. Rohman, "Klasifikasi Kualitas Buah Apel Berdasarkan Warna dan Bentuk Menggunakan Metode KNN," Generation Journal, vol. 8, no. 1, pp. 2549-2233, 2023.

[2] S. Ulum, R. F. Alifa, P. Rizkika and C. Rozikin, "Perbandingan Performa Algoritma KNN dan SVM dalam Klasifikasi Kelayakan Air Minum," Generation Journal, vol. 7, no. 2, pp. 2549-2233, 2023.

[3] R. A. Safitri, S. Nurdiani, D. Riana and S. Hadianti, "Klasifikasi Jenis Buah Apel Menggunakan Metode Orde 1 dengan Algoritma Multi Support-Vector Machines," Paradigma, vol. 21, no. 2, pp. 2579-3500, 2019.

[4] S. K. Rajput and R. K. Agrawal, " A comparative study of machine learning techniques for apple fruit quality classification.," International Journal of Agricultural and Biological Engineering, vol. 14, no. 1, pp. 123-135, 2021.

[5] N. Elgiriyewithana and E. Nidula, "Performance Evaluation of Classification Algorithms for Predicting Apple Quality," Journal of Artificial Intelligence Research, vol. 12, no. 4, pp. 345-356, 2020.

[6] Y. Li, Y. Liu and X. Han, "Apple quality identification and classification by image processing based on convolutional neural networks," Scientific Reports, vol. 11, no. 16618, 2021.

[7] G. Aurelien, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, 2019.

[8] A. D. P. Wicaksono and H. Tantyoko, "Hybrid Algoritma Vgg16-Net dengan Support Vector Machine untuk Klasifikasi Jenis Buah dan Sayuran," Jurnal Teknologi Informasi dan Multimedia, vol. 5, no. 2, pp. 56-65, 2023.

[9] I. D. Apostolopoulos , M. Tzani and S. I. Aznaouridis, "A General Machine Learning Model for Assessing Fruit Quality Using Deep Image Features," MDPI, vol. 4, no. 4, pp. 812-830, 2023.

[10] F. I. Ihab and C. Xu, Data Cleaning, Morgan & Claypool, 2019.

[11] S. Garcia, S. Ramirez-Gallego, J. Luengo, J. M. Benitez and F. Herrea, "Big Data Analytics," Big data preprocessing: methods and prospects, vol. 1, no. 9, 2016.

[12] T. Hastie, J. Friedman and R. Tibshirani, The Elements of Statistical Learning, Springer Link, 2001.

[13] A. Faradibah, D. Widyawati, A. U. T. Syahar, S. R. Jabir and P. L. L. Belluano, "Comparison Analysis of Random Forest Classifier, Support Vector Machine, and Artificial Neural Network Performance in Multiclass Brain Tumor Classification," Indonesian Journal of Data and Science, vol. 4, no. 2, 2023.

[14] A. A. Kasim and M. Sudarsono, "Algoritma Support Vector Machine (SVM) untuk," Seminar Nasional APTIKOM (SEMNASTIK), vol. 1, no. 2922-8929, p. 569, 2019.

[15] R. Munawarah, O. Soesanto and M. R. Faisal, "PENERAPAN METODE SUPPORT VECTOR MACHINE PADA DIAGNOSA HEPATITIS," Jurnal Ilmiah KLIK Kumpulan Jurnal Ilmu Komputer, vol. 3, no. 1, 2016.

[16] M. Jordan, P. J. Kleinberg and S. Bernhard, Pettern Recognition and Machine Learning Christopher M. Bishop, New York: Springer Science, 2006.

[17] E. Saraswati, Y. Umaidah and A. Voutama, "Penerapan Algoritma Artificial Neural Network untuk Klasifikasi Opini Publik Terhadap Covid-19," Generation Journal, vol. 5, no. 2, 2021.

[18] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press, 2016.

[19] S. Raschka and V. Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, Packt Publishing, 2019.

[20] S. S. Tripathy and B. Behera, "PERFORMANCE EVALUATION OF MACHINE LEARNING," Journal of Biomechanical Science and Engineering, p. 621, 2023.