CLUSTERING DATA BLOOD TRANSFUSION METHOD FUZZY C-MEANS

Main Article Content

Nikolaus Rio Saputra

Abstract

This study uses the clustering method to describe the behavior of blood donors. The purpose of this clustering is to provide the ability to determine the segmentation of blood donors to improve the prediction accuracy of managers. We use the Fuzzy k-means algorithm for the number of clusters 2, 3, 4, and 5 then we use the silhouette method to determine the quality of a cluster. The silhouette results show that the optimal cluster is 3 which is confirmed through the testing phase. The results of blood donor clustering illustrate that men have a tendency to donate blood.

Article Details

Section
Articles

References

[1] Lathifaturrahmah, "Perbandingan Hasil Penggerombolan K-Means, Fuzzy Kmeans, Dan Two Step Clustering," pp. 39-62, 1 Juli – Desember 2014.

[2] R. K. Baiq Nurul Haqiqi1, "Analisis Perbandingan Metode Fuzzy," vol. Vol. 8 No. 2, pp. 59-67, Desember 2015.

[3] R. K. Edhi Prabowo1, "Optimasi Algoritma Fuzzy Clustering dengan," vol. Volume 4 No.1, Pp. 1-6, Januari 2019.

[4] M. N. H. G. Widya Suerni1, "Penerapan Metode Subtractive Fuzzy C-Means," Vol. Volume 2 Nomor 2, pp. 63-74, Desember 2020.

[5] L. F. Titania Dwi Andini1, "Peningkatan Ketersediaan Darah Sesuai Segmentasi Umur," vol. Volume 12 Nomor 2, pp. 1-18, Oktober 2022.