IMPLEMENTASI FUZZY C-MEANS CLUSTERING DALAM MENENTUKAN USIA ABALONE
Main Article Content
Abstract
Clustering is a data grouping method that can provide solutions to problems encountered in everyday life. Therefore, the implementation of Machine Learning in clustering techniques will produce good prediction accuracy from training data classes with a large number of instances, but will produce poor accuracy in classes with a small number of instances.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] Bai, L., Liang, J., & Dang, C. (2012). A Modified K-Modes Clustering Algorithm.
[2] Bezdek, J., Ehrlich, R., & Full, W. (1984). FCM: The Fuzzy C-Means Clustering Algorithm. Computers & Geosciences, 191-203.
[3] Hartono, S., S. O., Tulus, & Nababan, E. B. (2018). Optimization Model of K-Means Clustering Using Artificial. IOP Conf. Series: Materials Science and Engineering, p. 288.
[4] Nash, W., Sellers, T. L., Talbot, S. R., Cawthorn, A. J., & Ford, W. B. (1994). The population biology of abalone (haliotis species) in tasmania. i. blacklip abalone (h. rubra) from the north coast and islands of bass strait. Sea Fisheries Division, Technical Report, 411.
[5] Tan, P.-N., Steinbach, M., & Kumar, V. (2016). Introduction to Data Mining. India: Pearson Education

