FORECASTING MOVING AVERAGE PADA DATA TIME SERIES KOTA BANDAR LAMPUNG
Main Article Content
Abstract
The current climate change has caused many problems for the surrounding environment. This can be proven by the significant increase in weather temperature, especially in Bandar Lampung City. This study aims to predict weather temperature time series data in Bandar Lampung City using the Forecasting method. This method is combined with the Moving Average technique with three features in the available temperature data, namely Minimum Temperature (Tn), Maximum Temperature (Tx), and Average Temperature (Tavg). Then, the results obtained will be evaluated using the Mean Square Error (MSE) and Root Mean Square Error (RMSE) techniques and compared with existing data. The MSE and RMSE values show relatively small differences, namely 0.74 and 0.86 for Tn, a significant difference of around 0.36 and 0.60 for Tx, while Tavg reached a value of exactly 100. This study requires further experimentation due to the possibility of bias in the data. Therefore, it is recommended to use other methods or add techniques for handling missing values or other techniques so that the results obtained are more accurate and reliable.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] L. Susanti, P. Hasanah dan W. , “Peramalan Suhu Udara dan Dampaknya Terhadap Konsumsi Energi Listrik di Kalimantan Timur,” Barekeng: Jurnal Ilmu Matematika dan Terapan, vol. 3, no. 14, pp. 397-410, 2020.
[2] S. dan A. Rohmah, “Penerapan Jaringan Syaraf Tiruan Metode Hopfield Untuk Prediksicuaca Di Kota Palangka Raya,” Jurnal Sains Komputer dan Teknologi Informasi, vol. 1, no. 3, pp. 52-59, 2020.
[3] A. D. Achmad, “Metode Moving Average dan Metode Support Vector Machine Untuk Prediksi Variabel Meteorologi,” JTRISTE, vol. 1, no. 4, pp. 45-50, 2017.
[4] T. Triwahyuni, I. Husna dan M. Andesti, “Hubungan Curah Hujan dengan Kasus Demam Berdarah Dengue di Bandar Lampung 2016-2018,” ARTERI: Jurnal Ilmu Kesehatan, vol. 3, no. 1, pp. 184-189, 2020.
[5] Z. Ivanovski, A. Milenkovski dan Z. Narasanov, “Time Series Forecasting Using A Moving Average Model for Extrapolation of Number of Tourist,” UTMS Journal of Economics, vol. 2, no. 9, pp. 121-132, 2018
[6] F. N. Adnan dan A. Nahrul, “Analisis Penentuan Data Latih pada PeramalanCurah Hujan Menggunakan Metode Simple Moving Average,” Journal of Information System, vol. 1, no. 3, pp. 49-58, 2018.

