EKSPLORASI PENGGUNAAN ALGORITMA K-MEANS CLUSTERING UNTUK ANALISIS TREN HARGA KOMODITAS WILAYAH INDONESIA TIMUR

Main Article Content

Marchel Yusuf Rumlawang Arpipi

Abstract

The application of machine learning has been very useful in decision making and analysis in various industrial fields. One of the most frequently used algorithms is K-Means for clustering. This algorithm is used to analyze commodity price trends in Eastern Indonesia. The purpose of this study is to see how K-Means works in grouping each commodity in a region into several clusters, calculating the average silhouette score produced, and measuring the extent to which each sample in a particular cluster matches its closest group compared to its closest neighbors. The market segmentation results show that each group with similar behavior and characteristics can be treated differently in marketing and pricing strategies, especially for commodities such as rice and beef, as well as cooking oil and sugar, which influence each other in such a way that if the price of one commodity rises, the price of other commodities will also rise.

Article Details

Section
Articles

References

[1] D. Ariestiyanti dan V. Adrison, “Revitalisasi Pasar Dan Stabilisasi Harga Komoditas Pangan,” Buletin Ilmiah Litbang Perdagangan (BILP), vol. 2, no. 14, pp. 261-282, Dec 2020.

[2] B. Marpaung, H. Siregar dan L. Anggraeni, “Analysis of El Ni˜no Impact and the Price of Food Commodities on Inflation,” Jurnal Ekonomi Indonesia, vol. 1, no. 8, pp. 21-35, Aug 2018.

[3] M. H. Siregar, “Data Mining Klasterisasi Penjualan Alat-Alat Bangunan Menggunakan Metode K-Means (Studi Kasus Di Toko Adi Bangunan),” Jurnal Teknologi dan Open Source (JTOS), vol. 2, no. 1, pp. 83-91, Dec 2018.

[4] Y. Prayoga, H. S. Tambunan dan I. Parlina, “Penerapan Clustering Pada Laju Inflasi Kota Di Indonesia Dengan Algoritma K-Means,” BRAHMANA: Jurnal Penerapan Kecerdasan Buatan, vol. 1, no. 1, pp. 24-30, 2019.

[5] J. Nasir, “Penerapan Data Mining Clustering Dalam Mengelompokan Buku Dengan Metode K-Means,” Jurnal SIMETRIS, vol. 2, no. 11, 2020.

[6] T. Siburian, M. Safii dan I. Parlina, “Penerapan Algoritma K-Means Clustering untuk Pengelompokan Harga Eceran Beras di Pasar Tradisional Berdasarkan Wilayah Kota,” dalam Prosiding Seminar Nasional Riset Information Science (SENARIS), 2019.

[7] R. Muliono dan Z. Sembiring, “Data Mining Clustering Menggunakan Algoritma K-Means Untuk Klasterisasi Tingkat Tridarma Pengajaran Dosen,” Journal Computer Engineering System and Science, vol. 2, no. 4, Juli 2019.

[8] A. Praja, C. Lubis dan D. E. Herwindiati, “Deteksi Penyakit Diabetes Dengan Metode Fuzzy C-Means Clustering Dan K-Means Clustering,” Computatio : Journal of Computer Science and Information Systems, vol. 1, no. 1, Apr 2017.

[9] F. Yunita, “Penerapan Data Mining Menggunkan Algoritma K- Means Clustring Pada Penerimaan Mahasiswa Baru (Studi Kasus : Universitas Islam Indragiri),” SISTEMASI, vol. 3, no. 7, p. 238, 2018.

[10] “Pengelompokan Data Kriminal Pada Poldasu Menentukan Pola Daerah Rawan Tindak Kriminal Menggunakan Data Mining Algoritma K-Means Clustering,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 2, no. 1, p. 151, 202.