ANALISIS PERBANDINGAN ALGORITMA SUPPORT VECTOR MACHINE DAN ARTIFICIAL NEURAL NETWORK DALAM PREDIKSI DAN KLASIFIKASI KUALITAS PISANG
Main Article Content
Abstract
This research to compare the performance of the Support Vector Machine (SVM) for banana quality classification and Artificial Neural Network (ANN) algorithms in predicting banana quality. The Research method involves using the RBF kernel for SVM and the MLP architecture for ANN. The dataset on banana quality consists of 8000 samples and 8 columns, used to for this research dataset. SVM and ANN are trained and evaluated using the same datasets to compare their accuracy. The average experimental results show that SVM (RBF Kernel) achieves higher accuracy, with attributes such as accuracy, precision, recall, and f1-score at 0,981 compared to ANN (MLP) which only achieves 0,98. However, ANN shows a tendency to be more flexible in handling data variations. SVM with the RBF kernel is more suitable for modeling banana quality with a stable dataset, while ANN with MLP is more appropriate for datasets with more complex variations.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] Ashari, S. (2006). “Analisis Kandungan Gizi dan Energi Buah Pisang.” Jurnal Gizi dan Pangan, 12(2), 78-85.
[2] Sugiyono, Sugiono. (2015). Metode Penelitian Kuantitatif, Kualitatif, dan Kombinasi. Bandung:Alfabeta.
[3] Santosa, B. 2007. Data Mining Teknik Pemanfaatan Data untuk Keperluan Bisnis. Graha Ilmu : Yogyakarta.
[4] Awad, M., & Khanna, R. (2015). Efficient learning machines: Theories, concepts, and application for engineers and system designers. In Efficient learning Machines: Theories, Concepts, and Applications for Engineers and System Designers (Issue May 2016). https://doi.org/10.1007/978-1-4302-5990-9
[5] Nielsen, M. (2015). Neural Networks and Deep Learning
[6] Du, R., Liu, W., & Jia, X. (2002). Multi-layer perceptrons for pattern recognition. IEEE Transactions on Neural Network, 13(2), 347-361
[7] Sihombing, P.R. dan Hendarsin, O.P. (2017). Perbandingan Metode Artificial Neural Network (ANN) dan Support Vector Machine (SVM) untuk Klasifikasi Kinerja Perusahaan Daerah Air Minum (PDAM) di Indonesia. Jurnal Ilmu Komputer VOL XIII No. 1: p-ISSN: 1979-5661 e-ISSN: 2622-321X.
[8] Siagin, R. Y., 2011. Klasifikasi Parket Kayu Jati Menggunakan Metode Support Vector Machine (SVM). Jawa Barat, Skripsi, Jurusan Teknik Informatika, Fakultas Teknologi
Industri, Universitas
[9] Rachman, 2012. Perbandingan Klasifikasi Tingkat Keganasan Breast Cancer dengan Menggunakan Regresi Logistik Ordinal dan Support Vector Machine. s.I., s.n.
[10] Weiss, S.M., & Davidson, D. (2010). Algorihtms and techniques for empirical knowledge discovery. Springer Science & Business Media
[11] Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: theory and applications. Neurocomputing, 70(1-3), 489-501
[12] Brownlee, J. (2016). Master Machine Learning Algorithms: discover how they work and implement them from scratch. Jason Brownlee.
[13] Wu, G., Kim, M., Wang, Q., Gao, Y., Liao, S., & Shen, D. (2013). Unsupervised deep feature learning for deformable registration of MR brain images. International Conference on Medical Image Computing and Computer-Assisted Intervention, 649-656
[14] Russell, S. J., & Norvig, P. (2016). Artificial intelligence: a modern approach.Malaysia;Pearson Education Limited,.
[15] M. A. Nielsen, “Neural Networks and Deep Learning.” Determination Press, 2015.
[16] A. Intelligence, “Fundamentals of Neural Networks Artificial Intelligence Fundamentals of Neural Networks Artificial Intelligence,” pp. 6-102, 2010.
[17] Puspitaningrum, D. 2006. Pengantar Jaringan Saraf Tiruan. Andi Offset, Yogyakarta. [18] Fausset, L.V. 1994. Fundamentals of Neural Networks: Architectures, Algorithms, andApplications. Prentice Hall, New Jersey
[19] Purnomo, M.H. dan Kurniawan A. 2006. Supervised Neural Network. Graha Ilmu, Surabaya
[20] Alexander Amini, Intro to Deep Learning, MIT 6.S191, 2021

