KLASIFIKASI INDEKS STANDAR PENCEMARAN UDARA DI JAKARTA DENGAN METODE K-NEAREST NEIGHBORS DAN ARTIFICIAL NEURAL NETWORK

Main Article Content

Nicholas Eugene Supardi

Abstract

This research looks at how two machine learning algorithms, K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN), function to predict the Air Pollution Standard Index (ISPU) in Jakarta. The data used is from 2014 to 2019 and includes ten features, including target classes and air quality parameters that are based on ISPU. After the data cleaning and sharing stage, both algorithms were trained and tested based on accuracy, precision, recall, and F-1 score metrics. The results show that KNN has 98% accuracy, while ANN has 97% accuracy. Thus, KNN is more suitable for predicting the Jakarta ISPU dataset. This research provides insight into how on those algorithms can be used to address urban air quality issues.

Article Details

Section
Articles

References

[1] F. M. Putra and I. S. Sitanggang, "Classification model of air quality in Jakarta using decision tree algorithm based on air pollutant standard index," IOP Conference Series: Earth and Environmental Science, pp. 1-11, 2020.

[2] M. A. Latief and Y. Karyanti, "DATA MINING & ANALYTIC FORECASTING INDEKS STANDAR PENCEMAR UDARA JAKARTA MENGGUNAKAN METODE LINEAR REGRESSION (STUDI KASUS: DATASET INDEKS STANDAR PENCEMAR UDARA JAKARTA 2021)," Journal of Social Resarch, p. 11, 20 September 2022.

[3] Sang, E. Sutoyo and I. Darmawan, "ANALISIS DATA MINING UNTUK KLASIFIKASI DATA KUALITAS UDARA," e-Proceeding of Engineering, vol. 8, no. 5, p. 10, Oktober 2021.

[4] W. Apriliah, I. Kurniawan, M. Baydhowi and T. Haryati, "Prediksi Kemungkinan Diabetes pada Tahap Awal Menggunakan Algoritma KlasifikasiRandom Forest," SISTEMASI: Jurnal Sistem Informas, vol. 10, no. 1, pp. 1-9, Januari 2021

[5] P. R. Sihombing and A. M. Arsani, "COMPARISON OF MACHINE LEARNING METHODS IN CLASSIFYING POVERTY IN INDONESIA IN 2018," Jurnal Teknik Informatika (JUTIF), vol. 2, no. 1, p. 6, 15 Januari 2021.

[6] J. Narabel and S. Budi, "Deteksi Dini Status Keanggotaan Industri Kebugaran Menggunakan Pendekatan Supervised Learning," Jurnal Teknik Informatika dan Sistem Informasi, vol. 6, no. 2, p. 12, 2020

[7] S. Nurjanah, A. M. S. Universitas and D. S. Kusumaningrum, "PENERAPAN ALGORITMA K – NEAREST NEIGHBOR (KNN) UNTUK KLASIFIKASI PENCEMARAN UDARA DI KOTA JAKARTA," Scientific Student Journal for Information, Technology and, vol. 1, no. 2, p. 6, July 2020.

[8] L. A. Putri and Suwanda, "Implementasi Metode Artificial Neural Network (ANN) Algoritma Backpropagation untuk Klasifikasi Kualitas Udara di Provinsi DKI Jakarta Tahun 2021," Bandung Conference Series: Statistics, 2022.

[9] D. Cahyanti and A. R. S. A. Husniar, "Analisis performa metode Knn pada Dataset pasien pengidap Kanker Payudara," Indonesian Journal of Data and Science, vol. 1, no. 2, p. 5, July 2020.

[10] M. Resha, S. Syamsu, Andryanto and Bakry, "Prediksi Penyebaran Kasus Tuberkulosis dengan metode Artificial Neural Network dan Multi-Layer Perceptron di kota makassar," JNSTA JOURNAL OF NATURAL SCIENCE AND TECHNOLOGY ADPERTISI, p. 6, Desember 2021.

[11] A. Amalia, A. Zaidah and I. N. Isnainiyah, "PREDIKSI KUALITAS UDARA MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR," Jurnal Ilmiah Penelitian dan Pembelajaran Informatika, vol. 7, no. 2, p. 12, Juni 2022

[12] J. E. Widyaya and S. Budi, "Pengaruh Preprocessing Terhadap Klasifikasi Diabetic Retinopathy dengan Pendekatan Transfer Learning Convolutional Neural Network," Jurnal Teknik Informatika dan Sistem Informasi, vol. 7, no. 1, p. 15, 4 Maret 2021

[13] A. Putri, C. S. Hardiana, E. Novfuja, F. T. P. Siregar, Rahmaddeni, Y. Fatma and R. Wahyuni, "Komparasi Algoritma K-NN, Naive Bayes dan SVM untuk Prediksi Kelulusan Mahasiswa TingkatAkhir," MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. 3, no. 1, p. 7, April 2023.

[14] S. D. Prasetyo, S. ShofiahHilabi and F. Nurapriani, "Analisis Sentimen Relokasi Ibukota Nusantara Menggunakan Algoritma Naïve Bayes dan KNN," Jurnal KomtekInfo, vol. 10, no. 1, p. 7, 2023

[15] A. R. Bohari, "Meningkatkan Kinerja Backpropagation Neural Network Menggunakan Algoritma Adaptif," IMTechno: Journal of Industrial Management and Technology, vol. 3, no. 1, p. 6, Januari 2022

[16] N. R. Sari and Y. Mar’atullatifah, "PENERAPAN MULTILAYER PERCEPTRON UNTUK IDENTIFIKASI KANKER PAYUDARA," Jurnal Cakrawala Ilmiah, vol. 2, no. 8, p. 8, April 2023.

[17] D. Fatmawati, W. Trisnawati, Y. Jumaryadi and G. Triyono, "Klasifikasi Tingkat Kepuasan Penggunaan Layanan Teknologi Informasi Menggunakan Decision Tree," KLIK: Kajian Ilmiah Informatika dan Komputer, vol. 3, no. 6, p. 7, Juni 2023.

[18] M. L. B. Permadi and R. Gumilang, "PENERAPAN ALGORITMA CNN (CONVOLUTIONAL NEURAL NETWORK) UNTUK DETEKSI DAN KLASIFIKASI TARGET MILITER BERDASARKAN CITRA SATELIT," Jurnal Sosial dan Teknologi (SOSTECH), vol. 4, no. 2, p. 10, Febuari 2024.

[19] N. Puspitasari, A. Septiarini and A. R. Aliudin, "METODE K-NEAREST NEIGHBORDAN FITURWARNAUNTUK KLASIFIKASI DAUN SIRIH BERDASARKAN CITRA DIGITAL," Jurnal PROSISKO, vol. 10, no. 2, p. 8, 2023.

[20] A. Nugroho and Y. Religia, "Analisis Optimasi Algoritma Klasifikasi Naive Bayes menggunakan Genetic Algorithm dan Bagging," JURNAL RESTI, vol. 5, no. 3, pp. 504-510, 2021.