KLASIFIKASI DATA SERANGAN JANTUNG MENGGUNAKAN METODE SUPER VECTOR MACHINE DAN ARTIFICIAL NEURAL NETWORK

Main Article Content

Devanska Uzieltama Mardanus

Abstract

This study aims to compare the performance of two machine learning algorithms, namely Support Vector Machine (SVM) and Artificial Neural Network (ANN), in predicting the risk of heart attacks. The data used was obtained from Kaggle in 2021 and consists of 10 features, including parameters such as age, gender, and other relevant factors for predicting the risk of heart attacks. After the data cleaning and splitting process, both algorithms were trained and tested using accuracy, precision, recall, and F-1 score metrics. The research results show that SVM achieved an accuracy of 61%, while ANN achieved 84% accuracy. Based on these results, it can be concluded that ANN is more effective in predicting the risk of heart attacks from the dataset used. This study provides in-depth insights into the application of two machine learning algorithms, specifically SVM and ANN, in the context of predicting the risk of heart attacks. The findings may be beneficial for healthcare practitioners and researchers interested in developing predictive models for heart attack prevention.

Article Details

Section
Articles

References

[1] Thasya Aniamarta, Alifia Salsabilla Huda, Febriana Lizariani Aqsha, 2022, S, Jurnal Biologica Samudra, No. 4, Vol. 1, hal. 2, https://ejurnalunsam.id/index.php/jbs/article/download/3925/3394/ , 2022, Penyebab dan Pengobatan Serangan Jantung, DKI Jakarta.

[2] Astasari, 2022, 5 Faktor Pemicu Gejala Serangan Jantung, https://ayosehat.kemkes.go.id/5-faktor-pemicu-gejala-serangan-jantung , diakses tanggal 01 Mei 2024.

[3] dr. Pittara, 2022, Pengertian Serangan Jantung, https://www.alodokter.com/serangan-jantung , diakses tanggal 01 Mei 2024.

[4] Tri Rini Puji Lestari, 2023, Mengenali Kesehatan Jantung Melalui Deteksi Dini, https://berkas.dpr.go.id/puslit/files/isu_sepekan/Isu%20Sepekan---IV-PUSLIT-September-2023-196.pdf , diakses tanggal 02 Mei 2024.

[5] Asep Sumpena Nugraha, Ken Kinanti Purnamasari, Penerapan Metode Support Vector Machine Pada Part Of Speech Tag Bahasa Indonesia, Jakarta, 2024.

[6] Mohamad Frananda Adiezwara Ramadhan, 2023, Portofolio New Classification Machine Learning, https://bisa.ai/portofolio/detail/MTI3Nw, diakses tanggal 02 Mei 2024.

[7] Suripto, Rr Nurul Rahmanita, Ajeng Sekar Kirana, 2022, Teknik Pre-processing dan Classification Dalam Data Science, https://mie.binus.ac.id/2022/08/26/teknik-pre-processing-dan-classification-dalam-data-science/, diakses tanggal 02 Mei 2024.

[8] Andre Oliver, 2023, Bikin Data Lebih Mudah Dibaca Yuk Kenalan Dengan Data Preprocessing, https://glints.com/id/lowongan/data-preprocessing-adalah/ , diakses tanggal 02 Mei 2024.

[9] Christianini, N., dan Shawe-Taylor, J., Support Vector Machine, Cambrige University Press London, 2000.

[10] Bishop, C. M., Pattern Recognition and Machine Learning, Springer, Ohayo, 2006.

[11] Pedregosa, F, Varoquaux, G, Gramfort, A., Michel, V., Thirion, B., Grisel, O., 2011, "Scikit-learn: Machine Learning in Python". Journal of Machine Learning Research, 12(Oct), 2825-2830.

[12] Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, Cambridge M.A, 2016.

[13] Simon Haykin, Neural Networks and Learning Machines, Pearson, Upper Saddle River, NJ, 2009.

[14] Yegnanarayana B, Artificial Neural Networks, PHI Neural Networks, New Delhi, 2010.

[15] Raul Rojas, Neural Networks: A Systematic Introduction, Springer, Berlin, Heidelberg, 1996.

[16] Kevin L.Priddy, Paul E. Keller, Artificial Neural Networks: An Introduction, SPIE Press, Bellingham, WA, 2005.

[17] Jason Brownlee, Machine Learning Mastery With Python: Understand Your Data, Create Accurate Models and Work Projects End-to-End, Independently Published, Scotts Valley, CA, 2016.

[18] Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York. NY, 2009.

[19] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, An Introduction to Statistical Learning: with Applications in R, Springer, New York, NY., 2013.

[20] Sebastian Raschka, Vahid Mirjalili, Python Machine Learning: Machine Learning and Deep Learning with Python, scikit-learn, and TensorFlow 2, Packt Publishing, Birmingham, UK., 2019.

[21] Aurelien Geron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly Media, Sebastopol, CA. 2019.