ANALISIS PERBANDINGAN ALGORITMA K-MEANS DAN FUZZY C-MEANS DALAM PENGELOMPOKAN TIPE INFLASI KOTA DI INDONESIA
Main Article Content
Abstract
This study analyzes the comparison between the K-Means and Fuzzy C-Means algorithms in clustering cities in Indonesia based on types of inflation. The dataset used was obtained from the Central Bureau of Statistics (BPS), covering 10 types of inflation from January to October 2024, with a total of 5,371 data rows. A heatmap visualization was used for feature selection, resulting in six columns trained in the model. Both algorithms were tested in two scenarios: with and without outlier handling. The evaluation was conducted using the Silhouette Score and Davies-Bouldin Index to assess clustering quality. The results show that K-Means without outlier handling at n-cluster 6 achieved the best performance with a Silhouette score of 0.2493 and a DBI of 1.2061, indicating good cluster separation. Meanwhile, for the Fuzzy C-Means model, the best scenario without outlier handling was found at n-cluster 4. This study indicates that the scenario without outlier handling produces more stable clustering in K-Means compared to Fuzzy C-Means. These findings are expected to serve as a reference for the application of clustering methods for inflation analysis in Indonesia, supporting more precise economic policy-making.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] A. Salim And Fadilla, “Pengaruh Inflasi Terhadap Pertumbuhan Ekonomi Indonesia Anggun Purnamasari,” Ekon. Sharia J. Pemikir. Dan Pengemb. Ekon. Syariah, Vol. 7, No. 1, Pp. 17–28, 2021, [Online]. Available: Www.Bps.Go.Id,
[2] E. N. Nurkhanifah, “Analisis Dampak Menurunnya Daya Beli Di Lingkungan Masyarakat Indonesia Akibat Inflasi,” Sahmiyya, Vol. 2, No. 1, P. 241, 2023.
[3] A. Putri And R. J. Anward, “Efek Ambang Batas Inflasi Terhadap Pertumbuhan Ekonomi Di Indonesia,” Jiep J. Ilmu Ekon. Dan Pembang., Vol. 6, No. 2, P. 547, 2023, Doi: 10.20527/Jiep.V6i2.11008.
[4] S. Septiani, T. Rahmawati, V. D. Oktariani, E. Evi, And A. Fadilla, “Peran Kebijakan Moneter Di Indonesia Dalam Menghadapi Inflasi,” J. Econ. Assets, Eval., Vol. 1, No. 3, Pp. 1–7, 2024, Doi: 10.47134/Jeae.V1i3.204.
[5] D. Safitri, “Pengaruh Ekspor, Pengeluaran Pemerintah Dan Inflasi Terhadap Pertumbuhan Ekonomi Di Kalimantan Tengah,” Jepp J. Ekon. Pembang. Dan Pariwisata, Vol. 2, No. 1, Pp. 35–45, 2022, Doi: 10.52300/Jepp.V2i1.4432.
[6] L. P. Sari, A. Fanani, And A. H. Asyhar, “Analisis Perbandingan Pengelompokan Kota di Indonesia Berdasarkan Indikator Inflasi Tahun 2021 Dengan Metode Ward Dan K-Means,” J. Sains Mat. Dan Stat., Vol. 9, No. 2, P. 108, 2023, Doi: 10.24014/Jsms.V9i2.21100.
[7] D. Peng Et Al., “Clustering by Measuring Local Direction Centrality for Data with Heterogeneous Density and Weak Connectivity,” Nat. Commun., Vol. 13, No. 1, Pp. 1–14, 2022, Doi: 10.1038/S41467-022-33136-9.
[8] K. P. Sinaga And M. S. Yang, “Unsupervised K-Means Clustering Algorithm,” Ieee Access, Vol. 8, Pp. 80716–80727, 2020, Doi: 10.1109/Access.2020.2988796.
[9] Z. Nabila, A. Rahman Isnain, And Z. Abidin, “Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means,” J. Teknol. Dan Sist. Inf., Vol. 2, No. 2, P. 100, 2021, [Online]. Available: Http://Jim.Teknokrat.Ac.Id/Index.Php/Jtsi
[10] M. Shutaywi and N. N. Kachouie, “Silhouette Analysis for Performance Evaluation In Machine Learning With Applications to Clustering,” Entropy, Vol. 23, No. 6, Pp. 1–17, 2021, Doi: 10.3390/E23060759.
[11] Bps, “Inflasi Tahun-Ke-Tahun (Y-On-Y) Pada Bulan Februari 2024 Adalah 2,75 Persen,” Badan Pus. Stat., No. 15, Pp. 1–16, 2024, [Online]. Available: Https://Www.Bps.Go.Id/Id/Pressrelease/2024/03/01/2301/Inflasi-Tahun-Ke-Tahun--Y-On-Y--Pada-Bulan-Februari-2024-Adalah-2-75-Persen.Html
[12] S. Barat, “Hubungan Kausalitas Antara Inflasi Dan Pengangguran di Indonesia Tahun 2002-2021,” Vol. Vii, No. April, Pp. 21–33, 2022.
[13] M. Ridwan, M. F. Aponno, And J. Pelupessy, “Perhitungan Dan Penyajian Laporan Penjualan Dengan Menggunakan Pivot Table Pada Ud. Multi Tehnik,” J. Maneksi, Vol. 9, No. 1, Pp. 304–309, 2020, Doi: 10.31959/Jm. V9i1.403.
[14] M. Trassinelli and M. Maxton, “A Minimalistic and General Weighted Averaging Method for Inconsistent Data,” 2024.
[15] N. T. M. Sagala and F. Y. Aryatama, “Exploratory Data Analysis (Eda): A Study of Olympic Medallist,” Sistemasi, Vol. 11, No. 3, P. 578, 2022, Doi: 10.32520/Stmsi.V11i3.1857.
[16] A. Abadi, V. A. Dasu, And S. Sarkar, “Privacy-Preserving Data Deduplication For Enhancing Federated Learning of Language Models,” 2024, [Online]. Available: Http://Arxiv.Org/Abs/2407.08152
[17] T. L. Vo, T. Nguyen, H. L. Hammer, M. A. Riegler, And P. Halvorsen, “Explainability Of Machine Learning Models Under Missing Data,” Pp. 1–44, 2024, [Online]. Available: Http://Arxiv.Org/Abs/2407.00411
[18] P. R. Sihombing, S. Suryadiningrat, D. A. Sunarjo, And Y. P. A. C. Yuda, “Identifikasi Data Outlier (Pencilan) Dan Kenormalan Data Pada Data Univariat Serta Alternatif Penyelesaiannya,” J. Ekon. Dan Stat. Indones., Vol. 2, No. 3, Pp. 307–316, 2023, Doi: 10.11594/Jesi.02.03.07.
[19] M. A. Raza, A Mustafa, I. Ahmad, M. Gul, Shaista, And Amina, “Outlier Detection with Machine Learning in Wireless Sensor Networks,” Pakistan J. Sci. Res., Vol. 3, No. 1, Pp. 81–91, 2023, Doi: 10.57041/Pjosr.V3i1.964.
[20] Julianto Indri Tri, Kurniadi Dede, Nashrulloh Muhammad Rikza, And Mulyani Asri, “Comparison of Classification Algorithm and Feature Selection In Perbandingan Algoritma Klasifikasi Dan Feature Selection,” Jutif, Vol. 3, No. 3, Pp. 739–744, 2022, [Online]. Available: Http://Jutif.If.Unsoed.Ac.Id/Index.Php/Jurnal/Article/View/343%0ahttps://Jutif.If.Unsoed.Ac.Id/Index.Php/Jurnal/Article/Download/343/129
[21] S. A. Saltykov, “On the Utility of Feature Selection in Building Two-Tier Decision Trees,” Pp. 1–13, 2022, [Online]. Available: Http://Arxiv.Org/Abs/2212.14448
[22] Andy Hermawan, Antonius Andriyanto, Ryandri Alif Pratomoputra, William Armand Rahardjo, And Yogga Prastya Wijaya, “Optimalisasi Waktu Penjemputan Dan Lokasi Pada Data Histori Perjalanan Nyc Tlc Menggunakan Exploratory Data Analysis,” Uranus J. Ilm. Tek. Elektro, Sains Dan Inform., Vol. 2, No. 2, Pp. 121–133, 2024, Doi: 10.61132/Uranus.V1i2.175.
[23] A. Javaloy And I. Valera, “Lipschitz Standardization for Multivariate Learning,” 2020, [Online]. Available: Http://Arxiv.Org/Abs/2002.11369
[24] Darussalam And G. Arief, “Analisis Pengaruh Data Scaling Terhadap Performa Algoritme Machine Learning Untuk Identifikasi Tanaman,” Resti, Vol. 1, No. 1, Pp. 19–25, 2018.
[25] D. M. Saputra, D. Saputra, And L. D. Oswari, “Effect of Distance Metrics In Determining K-Value In K-Means Clustering Using Elbow and Silhouette Method,” Vol. 172, No. Siconian 2019, Pp. 341–346, 2020, Doi: 10.2991/Aisr.K.200424.051.
[26] C. Kamila, “Systematic Literature Review: Penggunaan Algoritma K-Means Untuk Clustering Di Indonesia Dalam Bidang Pendidikan,” Intech, Vol. 2, No. 1, Pp. 19–24, 2021, Doi: 10.54895/Intech.V2i1.866.
[27] A. Rizal, D. C. R. Novitasari, And M. Hafiyusholeh, “Pengelompokan Karyawan Berdasarkan Kesalehan Menggunakan Perbandingan Fuzzy C-Means, K-Means, Dan Probabilistic Distance Clustering,” J. Fourier, Vol. 11, No. 2, Pp. 69–77, 2022, Doi: 10.14421/Fourier.2022.112.69-77.
[28] A. Z. Faridee And V. P. Janeja, “Cluster Quality Analysis Using Silhouette Score,” Am. J. O, Vol. 15, No. 2, Pp. 7–22, 2020.
[29] F. Ros, R. Riad, And S. Guillaume, Pdbi: A Partitioning Davies-Bouldin Index for Clustering Evaluation, Vol. 528. 2023. Doi: 10.1016/J.Neucom.2023.01.043.
[30] I. T. Utami, F. Suryaningrum, And D. Ispriyanti, “K-Means Cluster Count Optimization with Silhouette Index Validation and Davies Bouldin Index (Case Study: Coverage Of Pregnant Women, Childbirth, And Postpartum Health Services in Indonesia in 2020),” Barekeng J. Ilmu Mat. Dan Terap., Vol. 17, No. 2, Pp. 0707–0716, 2023, Doi: 10.30598/Barekengvol17iss2pp0707-0716.