CLUSTERING KETIDAKCUKUPAN KONSUMSI PANGAN PER KABUPATEN/KOTA MENGGUNAKAN ALGORITMA K-MEANS DAN FUZZY C-MEANS

Main Article Content

Jonathan Suryadi

Abstract

Food consumption inadequacy is a significant problem in Indonesia, influenced by socio-economic factors and geographical conditions. This study aims to identify the distribution pattern of food consumption inadequacy per district/city using K-Means and Fuzzy C-Means algorithms. The data used comes from the Central Bureau of Statistics, covering the prevalence of inadequate food consumption throughout Indonesia. The results show that K-Means algorithm produces clustering with higher Silhouette Score for small number of clusters, while Fuzzy C-Means provides better stability on more complex clusters. These findings provide important insights for more effective data-driven food distribution policy making.

Article Details

Section
Articles

References

[1]. A. Kumar and S. S. Sodhi, "Comparative Analysis of Fuzzy C- Means and K-Means Clustering in the Case of Image Segmentation," 2021 8th International Conference on Computing for Sustainable Global Development (INDIACom), pp. 194-200, 2021

[2]. I. Tahyudin, G. Firmansyah, A. G. Ivansyah, W. Ma'arifah and L. Lestari, "Comparison of K-Means Algorithms and Fuzzy C-Means Algorithms for Clustering Customers Dataset," 2022 1st International Conference on Smart Technology, Applied Informatics, and Engineering (APICS), pp. 211-216, 2022.

[3]. S. a. H. D. Li, "A Comparative Study on k-Means Clustering with Different Cluster Representations," 2023 42nd Chinese Control Conference (CCC), pp. 7959-7964, 2024.

[4]. J. L. a. M. F. a. R. A. a. B. A. a. D. P. Corcuera Bárcena, "Federated c-means and Fuzzy c-means Clustering Algorithms for Horizontally and Vertically Partitioned Data," IEEE Transactions on Artificial Intelligence, pp. 1-15, 2024.

[5]. I. a. C. M. a. C. M. E. a. S. A. E. a. d. l. T. D. I. a. A. S. M. a. A. I. Mahnoor and Shafi, "A Review of Approaches for Rapid Data Clustering: Challenges, Opportunities, and Future Directions," IEEE Access, vol. 12, pp. 138086-138120, 2024.

[6] A. a. K. L. S. Pugazhenthi, "Selection of Optimal Number of Clusters and Centroids for K-means and Fuzzy C-means Clustering: A Review," 2020 5th International Conference on Computing, Communication and Security (ICCCS), pp. 1-4, 2020.

[7] R. S. a. M. S. I. Mohiuddin Ahmed, "The k-means Algorithm: A Comprehensive Survey and Performance Evaluation," Electronics, 2020, vol. 9, 2020.

[8] K. P. a. Y. M.-S. Sinaga, "Unsupervised K-Means Clustering Algorithm," IEEE Access, vol. 8, pp. 80716-80727, 2020.

[9] W. M. a. K. Xu, "Enhancement of the Classification Performance of Fuzzy C-Means through Uncertainty Reduction with Cloud Model Interpolation," Mathematics, 2024, vol. 12, 2024.

[10] S. a. L. D. a. Z. Z. a. P. R. Zhou, "A New Membership Scaling Fuzzy C-Means Clustering Algorithm," IEEE Transactions on Fuzzy Systems, vol. 29, pp. 2810-2818, 2021.

[11] A. P. a. Sengupta, "Benchmarking Studies Aimed at Clustering and Classification Tasks Using K-Means, Fuzzy C-Means and Evolutionary Neural Networks," Mach. Learn. Knowl. Extr., 2021, vol. 3, 2021.