ANALISIS CLUSTERING PENDUDUK BERDASARKAN KELOMPOK UMUR DENGAN K-MEANS DAN HIERARCHICAL CLUSTERING UNTUK PERENCANAAN DEMOGRAFI

Main Article Content

Lutfiana Sinta Lestari

Abstract

Demographic planning plays a vital role in regional development, helping governments design policies based on the specific needs of each age group. However, demographic data is often complex and challenging to interpret using traditional methods. This study employs K-Means and Hierarchical Clustering to group population data based on age groups. K-Means is utilized for its efficiency, while Hierarchical Clustering provides in-depth insights through dendrogram analysis. The analysis reveals three primary clusters: Cluster 2 (young individuals under 40 years) dominates the population (65%) and is prioritized for investments in education and employment opportunities. Cluster 1 (ages 40–59 years) requires policies aimed at enhancing work productivity, while Cluster 0 (elderly individuals over 60 years) necessitates elderly healthcare services and social welfare programs. The selection of three clusters as the optimal solution is supported by evaluation metrics such as the Silhouette Score and the Calinski-Harabasz Score. These results demonstrate that clustering methods are effective in analyzing demographic data, offering profound insights to support sustainable, data-driven planning. Furthermore, this research contributes to the academic literature on demographic data analysis using clustering techniques.

Article Details

Section
Articles

References

[1] Sudianing, n. K., & seputra, k. A. (2019). Peran sistem informasi pemerintahan daerah dalam menunjang peningkatan kualitas perencanaan pembangunan daerah. Locus, 11(2), 112-133.

[2] Sembiring, s. B. (2022). Analisis dinamika sosio-demografi sebagai acuan untuk mewujudkan rencana pemindahan ibu kota negara yang smart, green, beautiful dan sustainable. Bappenas working papers, 5(1), 120-137.

[3] Pratama, a. S., sari, s. M., hj, m. F., badwi, m., & anshori, m. I. (2023). Pengaruh artificial intelligence, big data dan otomatisasi terhadap kinerja sdm di era digital. Jurnal publikasi ilmu manajemen, 2(4), 108-123.

[4] Herdiana, o., maulani, s., & firdaus, e. A. (2021). Strategi pemasaran produk industri kreatif menggunakan algoritma k-means clustering berbasis particle swarm optimization. Nuansa informatika, 15(2), 1-13.

[5] Wibowo, g. (2022). Segmentasi pelanggan berdasarkan recency frequency monetary (rfm) dan user event tracking menggunakan algoritma k-means clustering (budi luhur tesis).

[6] Daniswara, a. A. A., & nuryana, i. K. D. (2023). Data preprocessing pola pada penilaian mahasiswa program profesi guru. Journal of informatics and computer science (jinacs), 5(01), 97-100.

[7] Sudipa, i. G. I., sarasvananda, i. B. G., prayitno, h., putra, i. N. T. A., darmawan, r., & wp, d. A. (2023). Teknik visualisasi data. Pt. Sonpedia publishing indonesia.

[8] Painem, p., soetanto, h., & solichin, a. (2023). Analisis keberhasilan studi awal mahasiswa menggunakan klasterisasi k-means. Faktor exacta, 16(3).

[9] Kurniawan, h. P., & farhatuaini, l. (2024). Identifikasi pola kepuasan mahasiswa terhadap proses pembelajaran menggunakan algoritma k-means clustering. Jurnal informatika: jurnal pengembangan it, 9(2), 164-172.

[10] Yudistira, a., & andika, r. (2023). Pengelompokan data nilai siswa menggunakan metode k-means clustering. Journal of artificial intelligence and technology information, 1(1), 20-28.

[11] Sadewo, m. G., eriza, a., windarto, a. P., & hartama, d. (2019, february). Algoritma k-means dalam mengelompokkan desa/kelurahan menurut keberadaan keluarga pengguna listrik dan sumber penerangan jalan utama berdasarkan provinsi. In seminar nasional teknologi komputer & sains (sainteks) (vol. 1, no. 1).

[12] Indra, i., nur, n., iqram, m., & inayah, n. (2023). Perbandingan k-means dan hierarchical clustering dalam pengelompokan daerah beresiko stunting. Inovtek polbeng-seri informatika, 8(2), 356-367.

[13] Sidebang, a. M. A. S. (2024). Pemetaan kemiskinan digital kabupaten/kota di sumatera utara menggunakan ward hierarchical clustering. Journal of analytical research, statistics and computation, 3(2), 23-39.

[14] Sidebang, a. M. A. S. (2024). Pemetaan kemiskinan digital kabupaten/kota di sumatera utara menggunakan ward hierarchical clustering. Journal of analytical research, statistics and computation, 3(2), 23-39.

[15] Fernandes, a. A. R. (2021). The use of ward linkage in cluster integration with a path analysis approach. Open science index 15 2021, 22, 92.

[16] Pratama, k. A. Mapping the potential for food sector agricultural district/city in east java 2013 using cluster analysis method ward's.

[17] Pramudiyanti, a. P., shafiro, m. F., & salim, l. A. (2024). K-means cluster analysis related to unmet need for family planning in banyuwangi, indonesia: a case study. Journal of public health research & community health development, 7(2).

[18] Kastreva, p., & patarchanova, e. (2021). Creating spatial models of demographic processes using cluster analysis for demographic policy planning in bulgaria. Journal of settlements & spatial planning, 12(2).

[19] Fuchs, m., & höpken, w. (2022). Clustering: hierarchical, k-means, dbscan. In applied data science in tourism: interdisciplinary approaches, methodologies, and applications (pp. 129-149). Cham: springer international publishing.

[20] Sarbaini, s., saputri, w., & muttakin, f. (2022). Cluster analysis menggunakan algoritma fuzzy k-means untuk tingkat pengangguran di provinsi riau. Jurnal teknologi dan manajemen industri terapan, 1(2), 78-84.

[21] Tendean, t., & purba, w. (2020). Analisis cluster provinsi indonesia berdasarkan produksi bahan pangan menggunakan algoritma k-means. Jurnal sains dan teknologi, 1(2), 5-11.

[22] Astria, c., windarto, a. P., wanto, a., & irawan, e. (2019, august). Metode k-means pada pengelompokan wilayah pendistribusian listrik. In seminar nasional sains dan teknologi informasi (sensasi) (vol. 2, no. 1).

[23] Astria, c., windarto, a. P., wanto, a., & irawan, e. (2019, august). Metode k-means pada pengelompokan wilayah pendistribusian listrik. In seminar nasional sains dan teknologi informasi (sensasi) (vol. 2, no. 1).

[24] Zulyani, a. A., irawan, a. S. Y., & jamaludin, a. (2023). Penerapan data mining menggunakan algoritma k-means untuk menentukan tingkat vaksinasi pada kecamatan tambun selatan. Innovative: journal of social science research, 3(3), 7037-7050.

[25] Sirait, n., & nababan, r. (2022). Implementation of data mining clustering astra vehicle insurance customers with the clustering method. Jurnal manajemen, informatika, rekayasa perangkat lunak dan teknologi komunikasi, 1(2), 73-85.