ANALISIS ALGORITMA K-MEANS DAN FUZZY C-MEANS UNTUK PERSENTASE RATA‑RATA PENGELUARAN UNTUK MAKANAN DAN BUKAN MAKANAN

Main Article Content

Fabian Darrell Widyadhana Reswara

Abstract

Data clustering is one of the important methods in data analysis, especially for understanding patterns and relationships in socio-economic data. This study compares the performance of K-Means and Fuzzy C-Means algorithms in clustering the percentage of average monthly per capita expenditure on food and non-food in urban areas. The data set consists of several urban areas with food and non-food expenditure variables as the main features. The performance of both algorithms was evaluated using metrics such as average silhouette value, computation time, and interpretation of cluster results. The results show that the K-Means algorithm overall produces better results than the Fuzzy C-Means algorithm. The largest average Silhouette Score is found in the K-Means and Fuzzy C-Means algorithm of 0.873 with cluster = 2. But in other clusters, the K-Means algorithm has better results.

Article Details

Section
Articles

References

[1] M. Triandini, S. Defit And G. W. Nurcahyo, "Data Mining Dalam Mengukur Tingkat Keaktifan Siswa Dalam Mengikuti Proses Belajar Pada Smp It Andalas Cendekia Dengan Menggunakan Metode K-Means Clustering," Jurnal Informasi Dan Teknologi, Vol. 3, No. 3, 2021.

[2] K. P. Simanjuntak And U. Khaira, "Pengelompokkan Titik Api Di Provinsi Jambi Dengan Algoritma Agglomerative Hierarchical Clustering," Malcom: Indonesian Journal of Machine Learning and Computer Science, Vol. 1, No. 1, 2021.

[3] R. J. Kasim, S. Bahri And S. Amir, "Implementasi Metode K-Means Untuk Clustering Data Penduduk Miskin Dengan Systematic Random Sampling," Prosiding Seminar Nasional Sistem Informasi Dan Teknologi (Sisfotek), 2021

[4] M. R. Sulistio, N. Suarna And O. Nurdiawan, "Analisa Penerapan Metode Clustering X-Means Dalam Pengelompokan Penjualan Barang," Jurnal Teknologi Ilmu Komputer, Vol. 1, No. 2, 2023.

[5] I. Soliani And S. Juanita, "Grouping the Prevalence of Disease Cases by Age In Bandung City Hospitals Using K-Means," Jurnal Teknik Informatika (Jutif), Vol. 3, No. 6, 2022.

[6] G. B. Kaligis And S. Yulianto, "Analisa Perbandingan Algoritma K-Means, Kmedoids, Dan X-Means Untuk Pengelompokkan Kinerja Pegawai," Vol. 1, No. 3, 2022.

[7] D. Marcelina, A. Kurnia And T., "Analisis Klaster Kinerja Usaha Kecil Dan Menengah Menggunakan Algoritma K-Means Clustering," Malcom: Indonesian Journal of Machine Learning and Computer Science, Vol. 3, No. 2, 2023.

[8] Y. Elda, S. Defit, Y. Yunus And R. Syaljumairi, "Klasterisasi Penempatan Siswa Yang Optimal Untuk Meningkatkan Nilai Rata-Rata Kelas Menggunakan K-Means," Jurnal Informasi Dan Teknologi, Vol. 3, No. 3, 2021.

[9] M. D. Permana, A. L. Hananto, E. Novalia, B. Huda And T. Paryono, "Klasterisasi Data Jamaah Umrah Pada Tanurmutmainah Tour Menggunakan Algoritma K-Means," Jurnal Komtekinfo, Vol. 10, No. 1, 2023.

[10] M. D. Chandra, E. Irawan, I. S. Saragih, A. P. Windarto And D. Suhendro, "Penerapan Algoritma K-Means Dalam Mengelompokkan Balita Yang Mengalami Gizi Buruk Menurut Provinsi," Bios: Jurnal Teknologi Informasi Dan Rekayasa Komputer, Vol. 2, No. 1, 2021.

[11] H. Syukron, M. F. Fayyad, F. J. Fauzan, Y. Ikhsani And U. R. Gurning, "Perbandingan K-Means K-Medoids Dan Fuzzy C-Means Untuk Pengelompokan Data Pelanggan Dengan Model Lrfm," Malcom: Indonesian Journal of Machine Learning and Computer Science, Vol. 2, No. 2, 2022.

[12] R. Fauziah And A. I. Purnamasari, "Implementasi Algoritma K-Means Pada Kasus Kekerasan Anak Dan," 2023.

[13] N. Ulinnuha, "Provincial Clustering in Indonesia Based on Plantation Production Using Fuzzy C-Means," Itsmart: Jurnal Ilmiah Teknologi Dan Informasi, Vol. 9, No. 1, 2020.

[14] M. Siregar And M., "Analisis Perilaku Sosial Masyarakat Terhadap Pandemi Menggunakan Metode Fuzzy C-Means," Journal of Information Systems and Technology (Jistech), Vol. 1, No. 2, 2024.

[15] A. C. Putra And K. D. Hartono, "Optimalisasi Penyaluran Bantuan Pemerintah Untuk Umkm Menggunakan Metode Fuzzy C-Means," Jurnal Resti, Vol. 5, No. 3, 2021.

[16] L. Wulandari And B. O. Yogantara, "Algorithm Analysis Of K-Means and Fuzzy C-Means for Clustering Countries Based on Economy and Health," Faktor Exacta, Vol. 15, No. 2, 2022.

[17] S. Mulyadi, F. Insani, S. Agustian And L. Afriyanti, "Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Mini Batch K-Means Clustering," Malcom: Indonesian Journal of Machine Learning and Computer Science, Vol. 4, No. 3, 2024.

[18] M. Farid, "Pengelompokan Data Pendistribusian Listrik Menggunakan Algoritma Density Based Spatial Clustering of Application with Noise (DBSCAN)," 2024.

[19] N. Hendrastuty, "Penerapan Data Mining Menggunakan Algoritma K-Means Clustering Dalam Evaluasi Hasil Pembelajaran Siswa," Jurnal Ilmiah Informatika Dan Ilmu Komputer (Jima-Ilkom), Vol. 3, No. 1, 2024.

[20] W. Putri And M. Afdal, "Penerapan Algoritma K-Means Untuk Pengelompokan Data Penyandang Disabilitas Di Kabupaten Rokan Hilir," Ijirse: Indonesian Journal of Informatic Research and Software Engineering, Vol. 3, No. 1, 2023.

[21] M. Ulfah, A. S. Irtawaty, S. Mulyanto, Y. Kurniawan And Z., "Pengelompokan Daerah Berdasarkan Faktor Dampak Bencana Tanah Longsor Menggunakan Algoritma K-Medoids," Vol. 9, No. 1, 2023.

[22] S. Ramadhani, D. Azzahra And T. Z, "Comparison Of K-Means And K-Medoids Algorithms in Text Mining Based on Davies Bouldin Index Testing for Classification of Student’s Thesis," Jurnal Teknologi Informasi & Komunikasi Digital Zone, Vol. 13, No. 1, 2022.

[23] B. Kristanto, A. T. Zy And M. Fatchan, "Analisis Penentuan Karyawan Tetap Dengan Algoritma K-Means Dan Davies Bouldin Index," Bulletin of Information Technology (Bit), Vol. 4, No. 1, 2023.

[24] D. Purliantoro And I. Ayesha, "Klasterisasi Data Mining K-Means Dengan Indeks Davies Bouldin Berdasarkan Hasil Peramalan Produksi Tanaman Biofarmaka Di Provinsi Indonesia Menggunakan Arima," Journal of Scientech Research and Development, Vol. 5, No. 1, 2023.

[25] A. M. Nusrang, M. K. Aidid And Z. Rais, "K-Means Cluster Analysis for Grouping Districts in South Sulawesi Province Based on Village Potential," Arrus Journal of Mathematics and Applied Science, Vol. 2, No. 2.