KLASIFIKASI JENIS DAUN MENGGUNAKAN METODE MACHINE LEARNING DENGAN TEKNIK EKSTRAKSI FITUR GRAY LEVEL CO-OCCURRENCE MATRICS (GLCM)
Main Article Content
Abstract
Leaves are a very important part of the plant. The diversity of leaf types is one of the main characteristics in identifying and classifying plants. However, classifying leaves is a complicated and time-consuming study, especially when a large number of species is involved. To overcome these difficulties, this study will use the GLCM (Gray Level Co-occurrence Matrix) technique in the classification of leaf types. GLCM is an effective and popular method for describing texture from digital images, and has been widely used in various fields, including image processing. The datas used are image data from 3 types of leaves, namely kemangi leaves, pohpohan leaves, and dewa leaves.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] Neneng, Kusworo Adi, dan Rizal Isnanto, 2016, "Support Vector Machine Untuk Klasifikasi Citra Jenis Daging Berdasarkan Tekstur Menggunakan Ekstraksi Ciri Gray Level Co-Occurrence Matrices (GLCM)." JSINBIS (Jurnal Sistem Informasi Bisnis) 6, no. 1, h. 1-10.
[2] Ayu Pariyandani, Diah Ayu Larasati, Eka Pirdia Wanti, dan Muhathir Muhathir, 2019, "Klasifikasi Citra Ikan Berformalin Menggunakan Metode K-NN dan GLCM." In Semantika (Seminar Nasional Teknik Informatika), vol. 2, no. 1, h. 42-47.
[3] Anita Ahmad Kasim, dan Agus Harjoko, 2014, "Klasifikasi citra batik menggunakan jaringan syaraf tiruan berdasarkan gray level co-occurrence matrices (GLCM)." In Seminar Nasional Aplikasi Teknologi Informasi (SNATI).