KLASIFIKASI MALARIA PADA CITRA APUSAN DARAH MENGGUNAKAN ARSITEKTUR INCEPTION V3 DAN XCEPTION
Main Article Content
Abstract
Plasmodium is the species that causes malaria and is carried by the bite of a female mosquito. According to World Health Organization records, malaria cases continue to increase from year to year and have become a major world problem. Accordingly, a system is needed to diagnose malaria parasites accurately and quickly, one of which is by utilizing Deep Learning. This research builds a system that is able to detect the presence of malaria parasites using blood smear images with two Convolutional Neural Network (CNN) architectures, namely InceptionV3 and Xception. After the model is trained and tested, an evaluation is carried out to measure the model's performance. An accuracy value of 97% was obtained for the InceptionV3 architecture and 91% for the Exception architecture. So it can be concluded that the InceptionV3 CNN architecture is the best method for diagnosing malaria parasites.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] I. Asmara, "Infection of Plasmodium knowlesi malaria in human," Jurnal Penyakit Dalam Indonesia, vol. 5, no. 4, p. 9, 2018.
[2] R. Rosnelly, B. S. Riza and S. Suparni, "Comparative Analysis of Support Vector Machine and Convolutional Neural Network for Malaria Parasite Classification and Feature Extraction," 2023.
[3] Y. M. Kassim, K. Palaniappan, F. Yang, M. Poostchi, N. Palaniappan, R. J. Maude, S. Antani and S. Jaeger, "Clustering-based dual deep learning architecture for detecting red blood cells in malaria diagnostic smears," ieee journal of biomedical and health informatics, vol. 25, no. 5, pp. 1735-1746, 2020.
[4] Y. sitta Dewi, I. W. Gustawan, M. G. D. L. Utama and B. N. P. Arhana, "Karakteristik infeksi malaria pada anak di RSUD Dekai Papua April-Juni 2018," Medicina, vol. 50, no. 3, 2019.
[5] W. H. Organization, World malaria report 2022, World Health Organization, 2022.
[6] M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger and G. Thoma, "Image analysis and machine learning for detecting malaria," Translational Research, vol. 194, pp. 36-55, 2018.
[7] A. Mbanefo and N. Kumar, "Evaluation of malaria diagnostic methods as a key for successful control and elimination programs," Tropical Medicine and Infectious Disease, vol. 5, no. 2, p. 102, 2020.
[8] B. P. Hartato and others, "Penerapan Convolutional Neural Network pada Citra Rontgen Paru-Paru untuk Deteksi SARS-CoV-2," Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), vol. 5, no. 4, pp. 747-759, 2021.
[9] L. Efrizoni, R. Amin and A. Rizali, "Detection Of Malaria Parasites In Human Blood Cells Using Convolutional Neural Network," JAIA-Journal of Artificial Intelligence and Applications, vol. 2, no. 2, pp. 8-14, 2022.
[10] S. Ependi, D. I. Mulyana and D. Lorinda, "Klasifikasi Pendeteksi Wajah Berhijab Mengunakan Metode CNN (Convlutional Neural Network)," Jurnal Pendidikan Tambusai, vol. 6, no. 1, pp. 3157-3164, 2022.
[11] P. Ilmiah and A. Santoso, "Implementasi Deep Learning Berbasis Keras," PS Informatika, F. Komunikasi, DAN Informatika, and UM Surakarta, 2018.
[12] M. M. Qanbar and S. Tasdemir, "Detection of malaria diseases with residual attention network," International Journal of Intelligent Systems and Applications in Engineering, vol. 7, no. 4, pp. 238-244, 2019.
[13] M. Masud, H. Alhumyani, S. S. Alshamrani, O. Cheikhrouhou, S. Ibrahim, G. Muhammad, M. S. Hossain and M. Shorfuzzaman, "Leveraging deep learning techniques for malaria parasite detection using mobile application," Wireless Communications and Mobile Computing, vol. 2020, pp. 1-15, 2020.
[14] D. Shah, K. Kawale, M. Shah, S. Randive and R. Mapari, "Malaria parasite detection using deep learning:(Beneficial to humankind)," in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, 2020, pp. 984-988.
[15] A. Zein, "Pendeteksian Penyakit Malaria Menggunakan Medical Images Analisis Dengan Deep Learning Python," Sainstech: Jurnal Penelitian dan Pengkajian Sains dan Teknologi, vol. 29, no. 1, 2019.
[16] S. M. Sam, K. Kamardin, N. N. A. Sjarif, N. Mohamed and others, "Offline signature verification using deep learning convolutional neural network (CNN) architectures GoogLeNet inception-v1 and inception-v3," Procedia Computer Science, vol. 161, pp. 475-483, 2019.
[17] M. Ramdhan and others, Metode penelitian, Cipta Media Nusantara, 2021.
[18] N. K. C. PRATIWI, N. IBRAHIM, Y. N. FU’ADAH and S. RIZAL, "Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning," ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 9, no. 2, p. 306, 2021.
[19] L. A. Andika, P. A. N. Azizah and R. Respatiwulan, "Analisis Sentimen Masyarakat terhadap Hasil Quick Count Pemilihan Presiden Indonesia 2019 pada Media Sosial Twitter Menggunakan Metode Naive Bayes Classifier," Indonesian Journal of Applied Statistics, vol. 2, no. 1, pp. 34-41, 2019.
[20] D. Kaur and G. K. Walia, "A hybrid aco-svm approach for detecting and classifying malaria parasites," Computational Network Application Tools for Performance Management, pp. 139-152, 2020.