KLASIFIKASI DATA TEKS UNTUK MENDETEKSI EMOSI PENGGUNA TWITTER MENGGUNAKAN MACHINE LEARNING

Main Article Content

Yosia A. Ishak

Abstract

Emotion detection on social media platforms such as Twitter is a challenge in the world of data processing. In contrast to real life, detecting emotions in text is a complex task due to a lack of context or some sentences are not provided with sufficient context to understand the emotions contained therein. This research aims to create a model that is capable of meeting the needs of text-based emotion classification in the Twitter application. In this research, a comparison was carried out between the Naïve Bayes and LinearSVC algorithms, and the final results were obtained where the LinearSVC algorithm achieved the best accuracy with 66%, while the Naïve Bayes algorithm achieved 57% accuracy. By conducting this research, it is hoped that it can contribute to developing understanding of sentiment analysis on social media and open up opportunities for further applications, such as monitoring public opinion and analyzing emotional trends in real-time.

Article Details

Section
Articles

References

[1]. F. Yusuf, H. Rahman, S. Rahmi dan A. Lismayani, “Pemanfaatan Media Sosial Sebagai Sarana Komunikasi, Informasi, Dan Dokumentasi: Pendidikan Di Majelis Taklim Annur Sejahtera,” Jurnal Hasil-Hasil Pengabdian dan Pemberdayaan Masyarakat, vol. 2, no. 1, p. 3, 2023.

[2] N. A. Siti, “Menilik Sejarah Media Sosial, Manfaat, dan Contohnya,” katadata, 1 April 2022. [Online]. Available: https://katadata.co.id/sitinuraeni/digital/6246823429ac2/menilik-sejarah-media-sosial-manfaat-dan-contohnya. [Diakses 4 December 2023].

[3] Nandy, “Pengertian Media Sosial, Sejarah, Fungsi, Jenis, Manfaat, dan Perkembangannya,” Gramedia, [Online]. Available: https://www.gramedia.com/literasi/pengertian-media-sosial/. [Diakses 4 December 2023].

[4] N. R. Aida dan S. Hardiyanto, “Mengenal Apa Itu Twitter dan Mengapa Orang Menggunakannya?,” Kompas, 24 March 2022. [Online]. Available:

https://www.kompas.com/tren/read/2022/03/24/200500665/mengenal-apa-itu-twitter-dan-mengapa-orang-menggunakannya?page=all. [Diakses 4 December 2023].

[5] O. S. Y. Prakasa dan K. M. Lhaksamana, “Klasifikasi Teks Dengan Menggunakan Algoritma K-Nearest Pada Kasus Kinerja Pemerintah Di Twitter,” e-Proceeding of Engineering, vol. 5, no. 3, p. 8238, 2018.

[6] anugrah dwi, “Pengertian Teks Beserta Jenisnya Lengkap,” Kampus Pascasarjana UMSU, 27 January 2023. [Online]. Available: https://pascasarjana.umsu.ac.id/pengertian-teks-beserta-jenisnya-lengkap/. [Diakses 4 December 2023].

[7] R. Tineges, “Mengenal Naive Bayes Sebagai Salah Satu Algoritma Data Science,” DQLab, 23 May 2022. [Online]. Available: https://dqlab.id/mengenal-naive-bayes-sebagai-salah-satu-algoritma-data-science. [Diakses 5 December 2023].

[8] Classification Example with Linear SVC in Python,” DataTechNotes, 7 January 2020. [Online]. Available: https://www.datatechnotes.com/2020/07/classification-example-with-linearsvm-in-python.html. [Diakses 4 December 2023].

[9] C. Pramartha dan P. W. A. Wibawa, “Systematic Literature Review: Metode Machine Learning dalam Klasifikasi Emosi pada Data Tekstual,” Jurnal Sistem Informasi dan Komputer (SISFOKOM), vol. 12, no. 03, 2023.

[10] D. H. Fudholi dan A. T. B. W, “Klasifikasi Emosi Pada Teks Dengan Menggunakan Metode Deep Learning,” Jurnal Ilmiah Indonesia, vol. 6, no. 1, 2021

[11] M. M. Nurrochman, A. L. Prasasti dan R. A. Nugrahaeni, “Implementasi Machine Learning Untuk Mendeteksi Unsur Depresi Pada Tweet Menggunakan Metode Naïve Bayes,” e-Proceeding of Engineering, vol. 8, no. 5, 2021.

[12] Kaggle: Tempat Belajar Data Science,” Course-Net, 27 November 2023. [Online]. Available: https://course-net.com/blog/kaggle-tempat-belajar-data-science/. [Diakses 4 December 2023].

[13] P. Gupta, “Emotion Detection from Text,” Kaggle, 2020. [Online]. Available: https://www.kaggle.com/datasets/pashupatigupta/emotion-detection-from-text. [Diakses 4 December 2023].

[14] N. L. Kamila, “Mengenal Apa Itu Tahap Preprocessing Data,” dibimbing, 25 November 2023. [Online]. Available: https://dibimbing.id/blog/detail/mengenal-apa-itu-tahap-preprocessing-data. [Diakses 4 December 2023].

[15] K. S. Nugroho, “Dasar Text Preprocessing dengan Python,” Medium, 18 June 2019. [Online]. Available: https://ksnugroho.medium.com/dasar-text-preprocessing-dengan-python-a4fa52608ffe. [Diakses 4 December 2023].

[16] A. Rizki, “#BelajarPython 9: Operasi ‘Tokenizing’ pada Teks Berbahasa Indonesia,” 16 August 2020. [Online]. Available: https://adityarizki.net/belajarpython-9-operasi-tokenizing-pada-teks-berbahasa-indonesia/. [Diakses 4 December 2023].

[17] Thalib, “NLP Preprocessing : Teknik Tokenisasi Untuk Memecah Kalimat menjadi Kata-Kata Pada Python,” Medium, 1 November 2019. [Online]. Available: https://medium.com/@irfandy.thalib/teknik-tokenisasi-untuk-memecah-kalimat-menjadi-kata-kata-pada-python-12f799b74d49. [Diakses 4 November 2023].

[18] R. Tineges, “Tahapan Text Preprocessing dalam Teknik Pengolahan Data,” DQLab, 17 June 2021. [Online]. Available: https://dqlab.id/tahapan-text-preprocessing-dalam-teknik-pengolahan-data. [Diakses 4 December 2023

[19] M. U. Albab, Y. Karuniawati dan M. N. Fawaiq, “Optimization of the Stemming Technique on Text preprocessing President 3 Periods Topic,” Jurnal Transformatika, vol. 20, no. 2, p. 1, 2023.

[20] E. T. Wijaya, “PERANCANGAN INFORMATION RETRIEVAL (IR) BERBASIS TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) UNTUK PERINGKASAN TEKS TUGAS KHUSUS BERBAHASA INDONESIA,” Jurnal Ilmiah Teknologi dan Informasi ASIA, vol. 7, no. 1, p. 82, 2013.

[21 Syarli dan A. A. Muin, “Metode Naive Bayes Untuk Prediksi Kelulusan (Studi Kasus: Data Mahasiswa Baru Perguruan Tinggi),” Jurnal Ilmiah Ilmu Komputer, vol. 2, no. 1, p. 22, 2016.

[22] A. Imran, M. Akbar, A. Desiani dan I. Irmeilyana, “Implementasi Algoritma Naive Bayes dan Support Vector Machine (SVM) Pada Klasifikasi Penyakit Kardiovaskular,” Jurnal Teknik Elektro dan Komputasi (ELKOM), vol. 4, no. 2, p. 209, 2022.