OPTIMALISASI PENGIRIMAN BARANG DENGAN MENGELOMPOKKAN TITIK PENGIRIMAN MENGGUNAKAN METODE K-MEANS CLUSTERING DAN HIERARCHICAL CLUSTERING

Main Article Content

Levina Olivia

Abstract

Optimization is a process carried out to achieve ideal results or effective values ​​that can be achieved. Optimization can also be interpreted as a form of optimizing something that already exists, or designing and making something optimally. In this study, optimization will be carried out related to the delivery of goods that were previously possibly done manually so that it was less effective in terms of time and cost. This optimization will apply a method of machine learning, namely K-Means Clustering and Hierarchical Clustering, where delivery points will be collected based on the available carriers. Each carrier will definitely have their own weight and volume capacity. The results of this study are in the form of several clusters containing which points will be sent along with what carrier will be used. The number of clusters here will be initialized automatically. The K-Means Clustering algorithm with a number of clusters of 12 and a silhouette value of 0.756 and a DBI value of 0.36 is suitable for the dataset in this study

Article Details

Section
Articles

References

1. D. P. ILHAM, "Optimalisasi Sistem Manajemen Keselamatan Untuk Meminimalisir Terjadinya Kecelakaan Kerja Di Tug Boat Transko Murai Milik Pt. Pertamina Trans Kontinental," 2019

2. R. A. Aditia Yudhistira, "Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering," Journal of Artificial Intelligence and Technology Information (JAITI), 2023.

3. P. R. N. S. Ahmad Chusyairi, "Pengelompokan Data Puskesmas Banyuwangi Dalam Pemberian Imunisasi Menggunakan Metode K-Means Clustering," Telematika , vol. 12, 2019.

4. A. K. Jain, "Data clustering: 50 years beyond K-means," vol. 31, no. 8.

5. T. M. D. M. N. N. S. P. C. D. S. R. &. W. A. Y. Kanungo, "An efficient k-means clustering algorithm: Analysis and implementation," IEEE Transactions on Pattern Analysis and Machine Intelligence.

6. M. E. K. H. A. &. V. P. A. Celebi, "A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Systems with Applications".

7. A. T. R. D. S. W. Fachrian Bimantoro Putra, "Penerapan Algoritma Hierarchical Clustering Dalam Pengelompokkan Kabupaten/Kota Di Papua Berdasarkan Indikator Kemiskinan," Mathematics & Applications, 2023.

8. A. S. R. S. E. F. C. S. J. C. W. A. C. Moises Silva, "Agglomerative concentric hypersphere clustering applied to structural damage detection," ResearchGate.

9. L. &. M. O. Rokach, "Clustering methods. In Data Mining and Knowledge Discovery Handbook," Springer.

10. J. H. Ward, "Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association".

11. A. K. &. D. R. C. Jain, "Algorithms for clustering data".