PERBANDINGAN KINERJA MODEL LSTM DAN RNN PADA REDIKSI HARGA MINYAK GORENG DI KOTA YOGYAKARTA

Main Article Content

Surya Halim

Abstract

This study aims to compare the performance of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) algorithms in predicting cooking oil prices using various unit layer configurations. The experimental results show that RNN, with a 64,32,16-unit layer configuration for predicting the prices of branded cooking oil Brand 2, achieved the best prediction performance, with a Mean Absolute Error (MAE) of 190.043, Root Mean Squared Error (RMSE) of 573.453, and Mean Absolute Percentage Error (MAPE) of 0.859%. Meanwhile, LSTM demonstrated optimal performance in predicting the prices of branded cooking oil Brand 1 with a 32-unit layer configuration, achieving an MAE of 168.233, RMSE of 546.887, and MAPE of 0.778%. Both algorithms have their respective advantages depending on the configuration and data characteristics. This study shows that LSTM is more suitable for highly accurate predictions, while RNN is more effective in capturing specific data patterns. This study provides significant contributions to selecting the optimal algorithm and configuration for commodity price prediction models.

Article Details

Section
Articles

References

[1] A. Nugroho and P. G. Salsabila, “Analisis Fenomena Harga Minyak Goreng di Indonesia dan Dampaknya terhadap Sektor Penyediaan Makan Minum,” Seminar Nasional Official Statistics, vol. 2022, no. 1, 2022, doi: 10.34123/semnasoffstat. v2022i1.1209.

[2] D. S. Pratiwi, F. Arkusi, and K. H. J. Wardani, “ANALISIS FAKTOR – FAKTOR YANG MENYEBABKAN KELANGKAAN MINYAK GORENG INDONESIA TAHUN 2022,” JURNAL ECONOMINA, vol. 2, no. 12, 2023, doi: 10.55681/economina. v2i12.1061.

[3] D. Kusnanda and A. A. Permana, “Analisis Sentimen Opini Masyarakat Terhadap Harga Minyak Goreng Pada Twitter,” Jurnal Minfo Polgan, vol. 12, no. 1, 2023, doi: 10.33395/jmp. v12i1.12326.

[4] L. R. Dewi, “Dampak Kenaikan Harga Minyak Goreng Bagi Pedagang Kecil,” Journal of Economics and Social Sciences (JESS), vol. 1, no. 2, 2022, doi: 10.59525/jess. v1i2.117.

[5] E. Setiawati, “ANALISIS DAMPAK KEBIJAKAN SATU HARGA MINYAK ‎GORENG TERHADAP KESEIMBANGAN PASAR DAN ‎SURPLUS EKONOMI,” Jurnal Ekonomika: Manajemen, Akuntansi, dan Perbankan Syari’ah, vol. 11, no. 2, 2022, doi: 10.24903/je. v11i2.1573

[6] J. Cahyani, S. Mujahidin, and T. P. Fiqar, “Implementasi Metode Long Short-Term Memory (LSTM) untuk Memprediksi Harga Bahan Pokok Nasional,” Jurnal Sistem dan Teknologi Informasi (JustIN), vol. 11, no. 2, 2023, doi: 10.26418/justin. v11i2.57395.

[7] Muhammad Arif, Rahmi Hidayati, and Nur Azmi, “IMPLIKASI KENAIKAN HARGA MINYAK GORENG TERHADAP USAHA MIKRO DI KECAMATAN KALIDONI KOTA PALEMBANG,” Journal of Scientech Research and Development, vol. 5, no. 2, 2024, doi: 10.56670/jsrd. v5i2.264.

[8] A. N. Andriana and C. Wulandari, “DINAMIKA HARGA MINYAK GORENG SERTA DAMPAKNYA TERHADAP PENGUKURAN STANDAR KUALITAS PRODUK,” EKUITAS (Jurnal Ekonomi dan Keuangan), vol. 7, no. 1, 2023, doi: 10.24034/j25485024.y2023.v7. i1.5186

[9] E. D. Lewaherilla, “Dampak Kenaikan Harga Minyak Goreng Terhadap Usaha Gorengan,” Musamus Journal of Economics Development, vol. 5, no. 2, 2023, doi: 10.35724/feb. v5i2.5375.

[10] M. A. Sholeh, “PERBANDINGAN MODEL LSTM DAN GRU UNTUK MEMPREDIKSI HARGA MINYAK GORENG DI INDONESIA,” EDUSAINTEK: Jurnal Pendidikan, Sains dan Teknologi, vol. 9, no. 3, 2022, doi: 10.47668/edusaintek. v9i3.593.

[11] F. Fahrudin, A. Jufri, and M. N. Kamil, “Analisis Kenaikan Harga Minyak Goreng Terhadap Pola Produksi Untuk Meningkatkan Pendapatan UMKM,” Jurnal Akuntansi, Manajemen dan Ekonomi, vol. 1, no. 2, 2022, doi: 10.56248/jamane. v1i2.28.

[12] Annisa Fitri, Fadila Margasaty, Kusmaria, Rini Desfaryani, and Vivi Utami Dewi, “PERAMALAN HARGA MINYAK GORENG DI TENGAH PANDEMI COVID-19 KOTA BANDAR LAMPUNG,” dwijenAGRO, vol. 10, no. 1, 2020, doi: 10.46650/dwijenagro.10.1.859.21-26.

[13] M. A. Zen, S. Wahyuningsih, and A. T. R. Dani, “Aplikasi Pendekatan Agglomerative Hierarchical Time Series Clustering untuk Peramalan Data Harga Minyak Goreng di Indonesia,” Seminar Nasional Official Statistics, vol. 2022, no. 1, 2022, doi: 10.34123/semnasoffstat. v2022i1.1394.

[14] L. S. Hasibuan and Y. Novialdi, “Prediksi Harga Minyak Goreng Curah dan Kemasan Menggunakan Algoritme Long Short-Term Memory (LSTM),” Jurnal Ilmu Komputer dan Agri-Informatika, vol. 9, no. 2, 2022, doi: 10.29244/jika.9.2.149-157.

[15] I. Amalou, N. Mouhni, and A. Abdali, “Multivariate time series prediction by RNN architectures for energy consumption forecasting,” Energy Reports, vol. 8, 2022, doi: 10.1016/j.egyr.2022.07.139.

[16] T. Luo, D. Chang, and Z. Xu, “Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model,” Information (Switzerland), vol. 13, no. 10, 2022, doi: 10.3390/info13100497.

[17] H. Jayadianti, V. A. Permadi, and P. Partoyo, “LSTM forecast of volatile national strategic food commodities,” JURNAL INFOTEL, vol. 15, no. 4, 2023, doi: 10.20895/infotel. v15i4.1037

[18] N. Prasetyo, N. A. Setiawan, and T. B. Adji, “Forecasting Oil Production Flowrate Based on an Improved Backpropagation High-Order Neural Network with Empirical Mode Decomposition,” Processes, vol. 10, no. 6, 2022, doi: 10.3390/pr10061137.

[19] M. Syarovy et al., “Prediction of Oil Palm Production Using Recurrent Neural Network Long Short-Term Memory (RNN-LSTM),” 2023. doi: 10.2991/978-94-6463-122-7_6.

[20 H. Hartono, “BUMI Stock Price Prediction Using Long Short-Term Memory (LSTM) with Three Hyperparameter Tuning Regression,” Quantitative Economics and Management Studies, vol. 3, no. 6, 2022, doi: 10.35877/454ri.qems1118.

[21] R. A. Andhika Viadinugroho and D. Rosadi, “Long Short-Term Memory Neural Network Model for Time Series Forecasting: Case Study of Forecasting IHSG during Covid-19 Outbreak,” in Journal of Physics: Conference Series, 2021. doi: 10.1088/1742-6596/1863/1/012016.

[22] J. Luo and Y. Gong, “Air pollutant prediction based on ARIMA-WOA-LSTM model,” Atmos Pollut Res, vol. 14, no. 6, 2023, doi: 10.1016/j.apr.2023.101761.

[23] A. Nilsen, “Perbandingan Model RNN, Model LSTM, dan Model GRU dalam Memprediksi Harga Saham-Saham LQ45,” Jurnal Statistika dan Aplikasinya, vol. 6, no. 1, 2022, doi: 10.21009/jsa.06113.

[24] D. Ardiansyah, “PERBANDINGAN MODEL PREDIKSI RADIASI MATAHARI BERBASIS MESIN PEMBELAJARAN PADA STASIUN METEOROLOGI FATMAWATI SOEKARNO BENGKULU,” Megasains, vol. 14, no. 1, 2023, doi: 10.46824/megasains. v14i1.129

[25] S. Tri Wijaya, I. Hartami Santi, and Z. Wulansari, “PENERAPAN METODE K-NEAREST NEIGHBOR UNTUK PREDIKSI HARGA JAGUNG DENGAN PENGUJIAN RMSE,” JATI (Jurnal Mahasiswa Teknik Informatika), vol. 7, no. 2, 2023, doi: 10.36040/jati. v7i2.7391.

[26] B. G. Prianda and E. Widodo, “PERBANDINGAN METODE SEASONAL ARIMA DAN EXTREME LEARNING MACHINE PADA PERAMALAN JUMLAH WISATAWAN MANCANEGARA KE BALI,” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, 2021, doi: 10.30598/barekengvol15iss4pp639-650.