PERFORMA ALGORITMA K-MEANS DAN FUZZY C-MEANS DALAM ANALISIS KLASTER PENDIDIKAN DI TINGKAT KECAMATAN JAKARTA

Main Article Content

Naramia Wijaya

Abstract

Quality education is a crucial factor in human resource development. However, the quality of education in Indonesia varies significantly, especially at the district level. This study aims to explore and compare the performance of the K-Means and Fuzzy C-Means algorithms in clustering education data at the district level in Jakarta. The dataset used in this study includes various variables related to education quality in Jakarta. The methods employed are K-Means Clustering and Fuzzy C-Means providing more stable and sensitive results to data changes. Based on this comparison, Fuzzy C-Means outperforms K-Means in terms of cluster quality, although both provide valuable insights into understanding education patterns at the district level. This study concludes that the use of clustering algorithms can assist in analyzing and improving education quality in Indonesia, particularly in Jakarta.

Article Details

Section
Articles

References

[1] J. Raya Palka NoKm et al., “Analisis Peran Pendidikan Terhadap Kualitas Sumber Daya Manusia Guna Meningkatkan Produktivitas Masyarakat Di DKI Jakarta Deris Desmawan Universitas Sultan Ageng Tirtayasa,” Jumek: Jurnal Manajemen dan Ekonomi Kreatif, vol. 1, no. 2, 2023, [Online]. Available: https://jakarta.bps.go.id/

[2] A. P. Yandika, “Hubungan Antara Tingkat Pendidikan dan Tingkat Pengetahuan Masyarakat Terhadap Kejadian Demam Berdarah,” Jurnal Ilmiah Indonesia, vol. 2022, no. 10, pp. 874–882, doi: 10.36418/cerdika.v2i10.458.

[3] L. Luk, A. Mufida, and M. S. Nasir, “Analisis Dinamis Tingkat Pengangguran di Indonesia,” 2021. [Online]. Available: https://economics.pubmedia.id/index.php/jmsd

[4] H. Sasono and Herlina, “Kolaboratif Perguruan Tinggi Dalam Pengembangan Umkm Di Kecamatan Pancoran, Jakarta Selatan”.

[5] A. Anita And S. I. Astuti, “Digitalisasi Dan Ketimpangan Pendidikan: Studi Kasus Terhadap Guru Sekolah Dasar Di Kecamatan Baraka,” Jurnal Pendidikan dan Kebudayaan, vol. 7, no. 1, pp. 1–12, Jun. 2022, doi: 10.24832/jpnk.v7i1.2509.

[6] P. A. Rizkianti, M. Asbari, N. P. Priambudi, S. Alhani, and J. Asri, “Pendidikan Indonesia Masih Buruk?,” Journal Of Information Systems And Management, vol. 03, no. 02, 2024, doi: 10.4444/jisma.v2i6.613.

[7] A. S. Manurung, A. Halim, and A. Rosyid, “Pengaruh Kemampuan Berpikir Kreatif untuk meningkatkan Hasil Belajar Matematika di Sekolah Dasar,” Jurnal Basicedu, vol. 4, no. 4, pp. 1274–1290, Oct. 2020, doi: 10.31004/basicedu. v4i4.544.

[8] D. Krasnov, D. Davis, K. Malott, Y. Chen, X. Shi, and A. Wong, “Fuzzy C-Means Clustering: A Review of Applications in Breast Cancer Detection,” Jul. 01, 2023, Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/e25071021.

[9] J. C. Bezdek, “FCM: The Fuzzy C-Means Clustering Algorithm,” 1984

[10] A. Yudhistira and R. Andika, “Pengelompokan Data Nilai Siswa Menggunakan Metode K-Means Clustering,” Journal of Artificial Intelligence and Technology Information (JAITI), vol. 1, no. 1, pp. 20–28, Feb. 2023, doi: 10.58602/jaiti. v1i1.22.

[11] I. Nozomi, “Penerapan Data Mining Untuk Peringatan Dini Banjir Menggunakan Metode Klastering K-Means (Studi Kasus Kota Padang),” Bulan Juni, 2023

[12] M. Nawaz, R. Qureshi, M. A. Teevno, and A. R. Shahid, “Object detection and segmentation by composition of fast fuzzy C-mean clustering-based maps,” J Ambient Intell Humaniz Comput, vol. 14, no. 6, pp. 7173–7188, Jun. 2023, doi: 10.1007/s12652-021-03570-6.

[13] R. J. Woodman and A. A. Mangoni, “A comprehensive review of machine learning algorithms and their application in geriatric medicine: present and future,” Nov. 01, 2023, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s40520-023-02552-2.

[14] K. P. Sinaga and M. S. Yang, “Unsupervised K-means clustering algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: 10.1109/ACCESS.2020.2988796.

[15] A. Jalal, A. Ahmed, A. A. Rafique, and K. Kim, “Scene Semantic Recognition Based on Modified Fuzzy C-Mean and Maximum Entropy Using Object-to-Object Relations,” IEEE Access, vol. 9, pp. 27758–27772, 2021, doi: 10.1109/ACCESS.2021.3058986.

[16] A. Abdelhafeez and H. K. Mohamed, “Skin cancer detection using neutrosophic c-means and fuzzy c-means clustering algorithms,” Journal of Intelligent Systems and Internet of Things, vol. 8, no. 1, pp. 33–42, 2023, doi: 10.54216/JISIoT.080103.

[17] S. M. Javidan, A. Banakar, K. A. Vakilian, and Y. Ampatzidis, “Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning,” Smart Agricultural Technology, vol. 3, Feb. 2023, doi: 10.1016/j.atech.2022.100081.

[18] K. E. Setiawan, A. Kurniawan, A. Chowanda, and D. Suhartono, “Clustering models for hospitals in Jakarta using fuzzy c-means and k-means,” in Procedia Computer Science, Elsevier B.V., 2022, pp. 356–363. doi: 10.1016/j.procs.2022.12.146.

[19] D. Das, P. Kayal, and M. Maiti, “A K-means clustering model for analyzing the Bitcoin extreme value returns,” Decision Analytics Journal, vol. 6, Mar. 2023, doi: 10.1016/j.dajour.2022.100152.

[20] “Springer Theses Recognizing Outstanding Ph.D. Research.” [Online]. Available: http://www.springer.com/series/8790

[21] C. L. Chowdhary, M. Mittal, P. Kumaresan, P. A. Pattanaik, and Z. Marszalek, “An efficient segmentation and classification system in medical images using intuitionist possibilistic fuzzy C-mean clustering and fuzzy SVM algorithm,” Sensors (Switzerland), vol. 20, no. 14, pp. 1–20, Jul. 2020, doi: 10.3390/s20143903.

[22] M. Shutaywi and N. N. Kachouie, “Silhouette analysis for performance evaluation in machine learning with applications to clustering,” Entropy, vol. 23, no. 6, Jun. 2021, doi: 10.3390/e23060759.

[23] A. C. Müller and S. Guido, “Introduction to Machine Learning with Python A GUIDE FOR DATA SCIENTISTS Introduction to Machine Learning with Python.”

[24] M. Jordan, J. Kleinberg, and B. Schölkopf, “Pattern Recognition and Machine Learning.”

[25] A. Smola and S. V. N. Vishwanathan, Introduction to Machine Learning. Cambridge Univiversity Press, 2008.