PENERAPAN METODE MACHINE LEARNING DALAM KLASIFIKASI DATA TEKS PENDERITA KANKER

Main Article Content

Ardiansyah Jaya Winata

Abstract

Cancer is a condition characterized by the uncontrolled growth of abnormal cells that can invade various organs of the body. This research aims to compare cancer classification models utilizing Random Forest, XGBoost, and Support Vector Machine (SVM) methods, with accuracy results reported for each algorithm. The dataset used consists of 7569 rows with two columns, one of which is the classification target, "Target". Before being used in the study, data preprocessing was conducted to improve data quality. The results revealed that Random Forest and XGBoost achieved the highest accuracy of 100%, while SVM achieved 92% accuracy respectively. This research not only compares the accuracy of the algorithms, but also explores the most common cancer types of these three cancers. Through this research, it is hoped to provide further insight into the effectiveness of classification algorithms in cancer patient identification as well as highlighting the types of cancer with the highest number of cases.

Article Details

Section
Articles

References

[1] R. Arania, R. Alfarisi, P. Rukmono and M. F. Mudtaghfirin, "Karakteristik Pasien Kanker Anak Berdasarkan Usia, Jenis Kelamin, Dan Jenis-Jenis

[2] Kanker Di Rsud Dr. H. Abdul Moeloek Tahun 2021," Jurnal Medika Malahayati, vol. Vol. 7 No. 2, p. 352, 2022.

[3] L. Rahayuwatri, I. A. Rizal, T. Pahria, M. Lukman and N. Juniarti, "Pendidikan Kesehatan tentang Pencegahan Penyakit Kanker dan Menjaga Kualitas Kesehatan," MEDIA KARYA KESEHATAN, vol. 3 No 1, p. 60, 2020

[4] N. Shafira and A. Wahyuni, "Manajemen Anestesi Pada Pasien Kanker Tiroid: Sebuah Laporan Kasus," Laporan Kasus, vol. Vol. 13 No. 1, p. 19, 2022.

[5] . M. P. Cardia, E. D. Martadiani and F. P. Sitanggang, "Karakteristik Ultrasonografi Pada Kecurigaan Klinis Kanker Tiroid Di Rsup Sanglah Denpasar Periode Januari 2015-Desember 2015," Jurnal Medika Udayana, vol. Vol. 9 No. 9, p. 76, 2020.

[6] F. I. Fathoni and A. S. Siwi, "Studi Kasus Asuhan Keperawatan pada Pasien Post Operasi Tiroidektomi atas Indikasi Kanker Tiroid," Indogenius, vol. Vol. 01 No. 02, p. 88, 2022.

[7] I. Buana and D. A. Harahap, "Asbestos, Radon Dan Polusi Udara Sebagai Faktor Resiko Kanker Paru Pada Perempuan Bukan Perokok," Averrous: Jurnal Kedokteran dan Kesehatan Malikussaleh, vol. Vol. 8 No. 1, p. 2, 2022.

[8] D. Septhya, K. Rahayu, S. Rabbani, V. Fitria, R. Y. Irawan and R. Hayami, "Implementasi Algoritma Decision Tree dan Support Vector Machine untuk Klasifikasi Penyakit Kanker Paru," MALCOM: Indonesian Journal of Machine Learning and Computer Science, vol. Vol. 3 No. 1, p. 15, 2023.

[9] . E. Putri and M. A. Rahman, "Sistem Pakar Mendiagnosa Stadium Dari Kanker Usus Besar Dengan Metode Certainty Factor," SYNTAX : Journal of Software Engineering, Computer Science and Information Technology, vol. Vol. 1 No. 2, pp. 63-64, 2020.

[10] R. D. Rambe, "Sistem Pakar Mendiagnosa Penyakit Kanker Usus Besar Pada Manusia Dengan Menerapkan Metode Hybrid Case Based," Jurnal Riset Komputer (JURIKOM), vol. vol. 6 No. 6, p. 606, 2019.

[11] N. K. Rusdi, E. N. Sari and N. Wulandari, "Ketepatan Obat, Dosis, dan Potensi Interaksi Obat pada Pasien Kanker Paru di Rumah Sakit X Jawa Barat Periode 2019-2021," Jurnal Sains dan Kesehatan, vol. Vol. 5 No. 3, p. 315, 2023.