KLASIFIKASI SMS SPAM MENGGUNAKAN NAIVE BAYES DAN SVM
Main Article Content
Abstract
This research focuses on developing a framework for distinguishing spam messages in SMS using two main characterization strategies, namely Credulous Bayes and Backing Vector Machine (SVM). The need for effective methods to filter unwanted messages, especially spam messages that can disrupt the user experience, is increasing with the rapid growth of SMS communications. We collect and process various sets of SMS data for this research, including spam and non-spam messages. The features obtained from message text analysis are then used to train the model with the help of Naive Bayes and SVM classification techniques. After that, we use standard metrics such as accuracy, precision, recall, and F1 score to assess how well the two models perform.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] Rahmaniar, Anastasya, et al. Bunga Rampai Isu-isu Komunikasi Kontemporer 2023. PT Rekacipta Proxy Media, 2023.
[2] Dwiyansaputra, Ramaditia, et al. "Deteksi SMS Spam Berbahasa Indonesia menggunakan TF-IDF dan Stochastic Gradient Descent Classifier." Jurnal Teknologi Informasi, Komputer, dan Aplikasinya (JTIKA) 3.2 (2021): 200-207.
[3] Irawan, Devi, et al. "Perbandingan Klassifikasi SMS Berbasis Support Vector Machine, Naive Bayes Classifier, Random Forest dan Bagging Classifier." Jurnal Sisfokom (Sistem Informasi Dan Komputer) 10.3 (2021): 432-437.
[4] Kurniawan, Candra. "A Survey on Big Data Analytics Model." ITEJ (Information Technology Engineering Journals) 4.1 (2019): 1-13.
[5] Apriyani, Hilda, and Kurniati Kurniati. "Perbandingan Metode Naïve Bayes Dan Support Vector Machine Dalam Klasifikasi Penyakit Diabetes Melitus." Journal of Information Technology Ampera 1.3 (2020): 133-143.
[6] B. Gunawan, H. Sastypratiwi, dan E. E. Pratama, "Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes," JEPIN (Jurnal Edukasi dan Penelitian Informatika), vol. 4, no. 2, hal. 113-118, 2018.
[7] M. Azhari, M. Mulkan, Z. Situmorang, dan R. Rosnelly, "Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes," Jurnal Media Informatika Budidarma, vol. 5, no. 2, hal. 640-651, 2021.
[8] Adi, Sumarni. "Implementasi Algoritma Naive Bayes Classifier Untuk Klasifikasi Penerima Beasiswa PPA Di Universitas Amikom Yogyakarta." Jurnal Mantik Penusa 22.1 (2018).
[9] Anggraeni, Merry. "INTERACTIVE QUESTION-ANSWERING MENGGUNAKAN NLP DAN ALGORITMA NAÏVE BAYES UNTUK LITERASI TENTANG GANGGUAN DENGAR (I-CHAT BOT)."
[10] Karnovi, Riki, Roni Habibi, and Mohammad Nurkamal Fauzan. Tutorial membuat aplikasi sistem monitoring progres pekerjaan dan evaluasi pekerjaan pada job desk operational human capital menggunakan metode naive bayes. Kreatif, 2020.
[11] Pudjiarti, Eni. "Prediksi Spam Email Menggunakan Metode Support Vector Machine dan Particle Swarm Optimization." Jurnal Pilar Nusa Mandiri 12.2 (2016): 171-181.
[12] Hadiyanoor, Amrul. "KLASIFIKASI PROPOSAL TUGAS AKHIR BERDASARKAN BIDANG KEAHLIAN DAN PEMINATAN DOSEN PEMBIMBING MENGGUNAKAN SUPPORT VECTOR MACHINE PADA JURUSAN TEKNIK INFORMATIKA DI STMIK INDONESIA BANJARMASIN." Jurnal Ilmiah Teknologi Informasi dan Komputer Pranala 13.2 (2018): 67-76.
[13] fauzi Abdulloh, Ferian, and Iqbal Rilo Pambudi. "Analisis sentimen pengguna youtube terhadap program vaksin covid-19." Csrid (computer science research and its development journal) 13.3 (2021): 141-148.
[14] Setiyono, Agus, and Hilman F. Pardede. "Klasifikasi Sms Spam Menggunakan Support Vector Machine." Jurnal Pilar Nusa Mandiri 15.2 (2019): 275-280.
[15] Setifani, Niken Ayu, Devinta Nurul Fitriana, and Ahmad Yusuf. "Perbandingan algoritma naïve bayes, svm, dan decision tree untuk klasifikasi sms spam." JUSIM (Jurnal Sistem Informasi Musirawas) 5.2 (2020): 167-174.
[16] Indiarto, Budi. "Klasifikasi Sms Spam Dengan Metode Naive Bayes Classifier Untuk Menyaring Pesan Melalui Selular." Telematika MKOM 8.2 (2017): 167-172.
[17] Herwanto, Herwanto, Nuke L. Chusna, and Muhammad Syamsul Arif. "Klasifikasi SMS Spam Berbahasa Indonesia Menggunakan Algoritma Multinomial Naïve Bayes." JURNAL MEDIA INFORMATIKA BUDIDARMA 5.4 (2021): 1316-1325.