PERBANDINGAN KINERJA ALGORITMA NAIVE BAYES DAN SUPPORT VECTOR MACHINES DALAM KLASIFIKASI ULASAN RESTORAN
Isi Artikel Utama
Abstrak
Tujuan dari penelitian ini adalah untuk membandingkan kinerja antara kedua algoritma, naive bayes dan support vector machine (SVM), dalam konteks penelitian ini, yang dibahas ialah klasifikasi ulasan restoran. Kedua algoritma ini adalah pilihan yang terbilang populer untuk bidang machine learning sebab kemampuan mereka yang mampu melakukan klasifikasi dan prediksi data dengan akurat. Dataset pada penelitian ini diperoleh dari website Kaggle, di mana ulasan positif diberi nilai 1 dan ulasan negatif diberi nilai 0. Melalui percobaan eksperimen ini algoritma yang mendapatkan akurasi klasifikasi paling besar ialah Support Vector Machine sebesar 77.89%, sedangkan naive bayes hanya mendapatkan akurasi klasifikasi sebesar 72.86%. Analisis klasifikasi perbandingan ini meliputi evaluasi metrik seperti akurasi, presisi, recall, f1-score, dan support. Diharapkan hasil penelitian ini dapat memberikan wawasan yang berharga untuk pemilihan kedua algoritma klasifikasi untuk tugas klasifikasi ulasan restoran.
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferensi
[1] Retno Sari, “Analisis Sentimen Review Restoran Menggunakan Algoritma Naïve Bayes Berbasis Particle Swarm Optimization”, Jurnal Informatika, vol. 6, no. 1, Apr 2019, pp. 23-28.
[2] K N. Reddy, Dr. B. I. Reddy, “Restaurant Review Classification Using Naïve Bayes Model”, Journal of University of Shanghai for Science and Technology, vol. 23, no. 8, Aug 2021, pp. 646-656.
[3] L. Gunawan, M. S. Anggreainy, L. Wihan, Santy, G. Y. Lesmana, and S. Yusuf, “Support vector machine based emotional analysis of restaurant reviews”, Procedia Computer Science, vol. 216, pp. 479–484, Jan. 2023.
[4] B. S. Amalia, Y. Umaidah, and R. Mayasari, “Analisis Sentimen Review Pelanggan Restoran Menggunakan Algoritma Support Vector Machine Dan K-Nearest Neighbor,” SITEKIN: Jurnal Sains, Teknologi dan Industri, vol. 19, no. 1, pp. 28–34, Nov. 2021.
[5] Y. Julianto, D. H. Setiabudi, and S. Rostianingsih, “Analisis Sentimen Ulasan Restoran Menggunakan Metode Support Vector Machine,” Jurnal Infra, vol. 10, no. 1, pp. 1–7, Jan. 2022
[6] M. Adnan, R. Sarno and K. R. Sungkono, "Sentiment Analysis of Restaurant Review with Classification Approach in the Decision Tree-J48 Algorithm," 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 2019, pp. 121-126.
[7] R. A. Laksono, K. R. Sungkono, R. Sarno and C. S. Wahyuni, "Sentiment Analysis of Restaurant Customer Reviews on TripAdvisor using Naïve Bayes," 2019 12th International Conference on Information & Communication Technology and System (ICTS), Surabaya, Indonesia, 2019, pp. 49-54.
[8] W. Parasati, F. A. Bachtiar, dan N. Y. Setiawan, “Analisis Sentimen Berbasis Aspek pada Ulasan Pelanggan Restoran Bakso President Malang dengan Metode Naive Bayes Classifier”, J-PTIIK, vol. 4, no. 4, pp. 1090–1099, Jun 2020.
[9] M. M. Hamad, M. A. Salih, and R. A. Jaleel, “Sentiment Analysis of Restaurant Reviews in Social Media using Naïve Bayes,” Applications of Modelling and Simulation, vol. 5, no. 0, pp. 166–172, Aug 2021,
[10] A. Krishna, V. Akhilesh, A. Aich, and C. Hegde, “Sentiment Analysis of Restaurant Reviews Using Machine Learning Techniques,” Lecture Notes in Electrical Engineering, pp. 687–696, Apr 2019
[11] M. Govindarajan, “Sentiment Analysis of Restaurant Reviews Using Hybrid Classification Method,” 2014.
[12] K. Zahoor, N. Z. Bawany and S. Hamid, "Sentiment Analysis and Classification of Restaurant Reviews using Machine Learning," 2020 21st International Arab Conference on Information Technology (ACIT), Giza, Egypt, 2020, pp. 1-6.
[13] J. C. Sugitomo, N. Kevin, N. Jannatri and D. Suhartono, "Sentiment Analysis using SVM and Naïve Bayes Classifiers on Restaurant Review Dataset," 2021 1st International Conference on Computer Science and Artificial Intelligence (ICCSAI), Jakarta, Indonesia, 2021, pp. 100-108.
[14] D. Kumar, Gopesh, A. Choubey, and P. Singh, “Restaurant Review Classification and Analysis”, Journal of Engineering Sciences, vol. 11, pp. 169-179. Aug 2020.
[15] P. Cheewaprakobkit, “Comparing SVM and Naïve Bayes Classifi ers for Online Reviews Based on Aspect-Based Sentiment Analysis,” vol. 7, no. 1, Jun 2018.
[16] L. Z. Nihayatin and S. Sutikno, “Perbandingan Uji Homogenitas Runtun Data Curah Hujan Sebagai Pra-Pemrosesan Kajian Perubahan Iklim,” Jurnal Sains dan Seni ITS, vol. 2, no. 2, pp. D255–D259, Sep. 2013
[17] F. -J. Yang, "An Implementation of Naive Bayes Classifier", 2018 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2018, pp. 301-306
[18] Q. Wang, "Support Vector Machine Algorithm in Machine Learning", 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 2022, pp. 750-756
[19] P. Bafna, D. Pramod and A. Vaidya, "Document clustering: TF-IDF approach", 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 2016, pp. 61-66
[20] R. Yacouby and D. Axman, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models,” ACLWeb, pp. 79-91, Nov. 01, 2020.
[21] Xue Ying, “An Overview of Overfitting and its Solutions”, IOP Publishing Ltd, pp. 1-6, China, 2019.