KLASIFIKASI JENIS BUAH DENGAN CONVOLUTIONAL NEURAL NETWORK (CNN) MENGGUNAKAN ARSITEKTUR XCEPTION

Main Article Content

Nathanael Victorious

Abstract

Deep learning is a subfield of machine learning that focuses on training artificial neural networks to learn and make intelligent decisions without being explicitly programmed. It is inspired by the structure and the functioning of the human brain. One of the most popular types of artificial neural networks is Convolutional Neural Network (CNN), CNN is known for its excellence in analyzing visual data such as image recognition, object detection, and image classification. In this research, CNN architecture exception is being used for classifying image of fruit variance. Exception is a type of CNN architecture, and it is an extension of the Inception architecture, which itself was designed to improve the efficiency and effectiveness of CNN. This research aims to know the performance of CNN using exception architecture in classify image of different types of fruits, such as Starfruit, Durian, Mangosteen, Rambutan, and Snake fruit. The result of this research shows that CNN models using exception architecture can predict image input very well. Using confusion matrix as an evaluation method, the model got 0.98 precision and 0.98 accuracy, therefore the model can accurately classify the image input to the fruit type classes that have been assigned.

Article Details

Section
Articles

References

[1] Goodfellow, I., Bengio, Y., dan Courville, A., 2016, Deep Learning, MIT Press, Cambridge.

[2] Wulandari, I., Yasin, H., dan Widiharih, T., 2020, Klasifikasi Citra Digital Bumbu dan Rempah dengan Algoritma Convolutional Neural Network (CNN), Jurnal Gaussian, Vol. 9, No. 3, hal. 273-282.

[3] Elvin, dan Lubis, C., 2022, Klasifikasi Citra Ikan Menggunakan Convolutional Neural Network, Jurnal Ilmu Komputer dan Sistem Informasi.

[4] Leovincent, A., dan Yoannita, 2023, Klasifikasi Ras Anjing Berdasarkan Citra Menggunakan Convolutional Neural Network, Jurnal Algoritme, Vol. 3, No. 2, hal. 160-169.

[5] Carnagie, J. O., Prabowo, A. R., Budiana, E. P., dan Singgih, I. K., 2022, Essential Oil Plants Image Classification Using Xception Model, Procedia Computer Science, Vol. 204, hal. 395-402.

[6] Naufal, M. F., dan Kusuma, S. F., 2021, Pendeteksi Citra Masker Wajah Menggunakan CNN dan Transfer Learning, Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), Vol. 8, No. 6, hal. 1293-1300.

[7] Chollet, F., 2017, Xception: Deep Learning with Depthwise Separable Convolutions, In Proceedings of the IEEE conference on computer vision and pattern recognition, hal. 1251-1258.

[8] Tsang, S., 2018, Review: Xception — With Depthwise Separable Convolution, Better Than Inception-v3 (Image Classification), https://towardsdatascience.com/review-xception-with-depthwise-separable-convolution-better-than-inception-v3-image-dc967dd42568, diakses tanggal 5 Juni 2023.

[9] Jakaria, A., Mu’minah, S., Riana, D., dan Hadianti, S., 2021, Klasifikasi Varietas Buah Kiwi dengan Metode Convolutional Neural Networks Menggunakan Keras, Jurnal Media Informatika Budidarma, Vol. 5, No. 4, hal. 1309-1315.

[10] Maulana, F. F., dan Rochmawati, N., 2019, Klasifikasi Citra Buah Menggunakan Convolutional Neural Network, Journals of Informatics and Computer Science (JINACS), Vol. 1, No. 2, hal. 104-108.

[11] Naik, S., dan Patel, B., 2017, Machine Vision based Fruit Classification and Grading, International Journal of Computer Applications, Vol. 170, No. 9, hal. 22-34.

[12] Olah, C, 2014, Conv Nets: A Modular Perspective, https://colah.github.io/posts/2014-07-Conv-Nets-Modular/, diakses tanggal 30 Juni 2023.

[13] Olah, C, 2014, Understanding Convolutions, https://colah.github.io/posts/2014-07-Understanding-Convolutions/, diakses tanggal 30 Juni 2023.

[14] Bai, C. et al., 2018, Optimization of Deep Convolutional Neural Network for Large Scale Image Retrieval, Neurocomputing, Vol. 303, hal. 60-67.

[15] Wu, X., Liu, R., Yang, H., dan Chen, Z., 2020, An Xception Based Convolutional Neural Network for Scene Image Classification with Transfer Learning, 2nd International Conference on Information Technology and Computer Application (ITCA), hal. 262-267.

[16] Pedregosa, F. et al., 2011, Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, Vol. 12, hal. 2825-2830.

[17] Srinivasan, K. et al., 2021, Performance Comparison of Deep CNN Models for Detecting Driver’s Distraction, Cmc-Tech Science Press, Vol. 68, No. 3, hal. 4109-4124.