PENGENALAN CITRA PENYAKIT DAUN PADI DI INDONESIA MENGGUNAKAN METODE XCEPTION DAN INCEPTIONV3

Main Article Content

Renaldy

Abstract

Rice is a staple food in Indonesia because almost all Indonesians consume rice from processed rice which becomes rice. In Indonesia there is a problem faced by farmers, namely bacterial leaf blight or rice leaf disease. This problem causes the photosynthesis function of rice leaves to be disrupted, therefore the purpose of this research is to recognize rice leaf disease from images using Xception and InceptionV3 methods. There are 3 rice leaf diseases that will be recognized including blast, blight, and tungro. From the accuracy of the two Convnet models is very good in predicting rice leaf disease, the Xception model has a higher accuracy than InceptionV3. Xception produces a validation accuracy of 98% and InceptionV3 produces a validation accuracy of 95%.

Article Details

Section
Articles

References

[1] Akhmad Gazali, Akhmad Rizali, Hairu Suparto, Jumar, Noorkomala Sari, Noorlaila, Hikma Ellya, Nukhak Nufita Sari, Riza Adrianoor Saputra, Muhammad Imam Nugraha, Ronny Mulyawan, Merry Awalia, Sitti Wahidaturahmah, “Pengabdian kepada Masyarakat: Pengenalan Penyakit Tanaman Padi dan Teknik Pengendaliannya di Desa Bentok Darat, Bati-bati, Kalimantan Selatan”, Lumbung Inovasi

[2] Arif Akbarul Huda, Bayu Setiaji, Fajar Rosyid Hidayat, “Implementasi Gray Level Cooccurrence Matrix (Glcm) Untuk Klasifikasi Penyakit Daun Padi”, Jurnal Pseudocode.

[3] Rizal Amegia Saputra, Sri Wasyianti, Adi Supriyatna, Dede Firmansyah Saefudin “Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi”, JURNAL SWABUMI.

[4] Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101”, JURNAL RESTI.

[5] Sarifah Agustiani, Yoseph Tajul Arifin, Agus Junaidi, Siti Khotimatul Wildah, Ali Mustopa, “Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram”, Jurnal Komputasi.

[6] Retno Nugroho Whidhiasih, Inna Ekawati, “Identifikasi Jenis Penyakit Daun Padi Menggunakan Adaptif Neuro Fuzzy Inferene System (ANFIS) Berdasarkan Tekstur”, Sinergi.

[7] Jani Kusanti, Noor Abdul Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut”, Jurnal Informatika: Jurnal Pengembangan IT (JPIT).

[8] Endang Anggiratih, Sri Siswanti, Saly Kurnia Octaviani, Arumsari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 Dengan Transfer Learning”, Jurnal Ilmiah Sinus (JIS).

[9] Mohtar Khoiruddin, Apri Junaidi, Wahyu Andi Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network”, Journal of Dinda.

[10] Ery Murniyasih, Luluk Suryani, “Penerapan Metode Learning Vector Quantization Untuk Identifikasi Penyakit Padi Berdasarkan Bentuk Bercak Daun”, Jurnal Elektro Luceat.

[11] Lulu Nafisa, Nur Ikhsanto, Sulistiyanto, “Penerapan Metode Forward Chaining Untuk Mengidentifikasi Hama Dan Penyakit Tanaman Padi”, Jurnal IRobot (International Research on Big-Data and Computer Technology).

[12] Afshin Gholamy, Vladik Kreinovich, Olga Kosheleva, “Why 70/30 or 80/20 Between Training and Testing Sets: A Pedagogical Explanation” UTEP-CS-18-09.

[13] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, Fellow, and Qing He, “A Comprehensive Survey on Transfer Learning”, arXiv.

[14] Institut Teknologi Nasional

[15] Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai, Pensee Wu, “Enhancement of Deep Learning in Image Classification Performance Using Xception with the Swish Activation Function for Colorectal Polyp Preliminary Screening”, E Mathematics.

[16] Rahmadhani Yusuf, Arif Akbarul Huda, “Deteksi Emosi Wajah Menggunakan Metode Backpropagation”, JACIS : Journal Automation Computer Information System.

[17] J. T. TOWNSEND, “Theoretical analysis of an alphabetic confusion matrix”,Psychonomic Journals.Inc. Austill, Texas

[18] Cyril Goutte, Eric Gaussier, “A Probabilistic Interpretation of Precision, Recall and”, ResearchGate.

[19] Reda Yacouby, Reda Yacouby, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models”, Computational Linguistics.

[20] Amalia Lugue, Alejandro Carrasco, Alejandro Martin, Ana de las Heras, “The impact of class imbalance performance metrics based on the binary confusion matrix,” Pattern Recognition.