PENGENALAN CITRA PENYAKIT DAUN PADI DI INDONESIA MENGGUNAKAN METODE XCEPTION DAN INCEPTIONV3
Main Article Content
Abstract
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Menawarkan akses terbukaReferences
[1] Akhmad Gazali, Akhmad Rizali, Hairu Suparto, Jumar, Noorkomala Sari, Noorlaila, Hikma Ellya, Nukhak Nufita Sari, Riza Adrianoor Saputra, Muhammad Imam Nugraha, Ronny Mulyawan, Merry Awalia, Sitti Wahidaturahmah, “Pengabdian kepada Masyarakat: Pengenalan Penyakit Tanaman Padi dan Teknik Pengendaliannya di Desa Bentok Darat, Bati-bati, Kalimantan Selatan”, Lumbung Inovasi
[2] Arif Akbarul Huda, Bayu Setiaji, Fajar Rosyid Hidayat, “Implementasi Gray Level Cooccurrence Matrix (Glcm) Untuk Klasifikasi Penyakit Daun Padi”, Jurnal Pseudocode.
[3] Rizal Amegia Saputra, Sri Wasyianti, Adi Supriyatna, Dede Firmansyah Saefudin “Penerapan Algoritma Convolutional Neural Network Dan Arsitektur MobileNet Pada Aplikasi Deteksi Penyakit Daun Padi”, JURNAL SWABUMI.
[4] Ulfah Nur Oktaviana, Ricky Hendrawan, Alfian Dwi Khoirul Annas, Galih Wasis Wicaksono, “Klasifikasi Penyakit Padi berdasarkan Citra Daun Menggunakan Model Terlatih Resnet101”, JURNAL RESTI.
[5] Sarifah Agustiani, Yoseph Tajul Arifin, Agus Junaidi, Siti Khotimatul Wildah, Ali Mustopa, “Klasifikasi Penyakit Daun Padi menggunakan Random Forest dan Color Histogram”, Jurnal Komputasi.
[6] Retno Nugroho Whidhiasih, Inna Ekawati, “Identifikasi Jenis Penyakit Daun Padi Menggunakan Adaptif Neuro Fuzzy Inferene System (ANFIS) Berdasarkan Tekstur”, Sinergi.
[7] Jani Kusanti, Noor Abdul Haris, “Klasifikasi Penyakit Daun Padi Berdasarkan Hasil Ekstraksi Fitur GLCM Interval 4 Sudut”, Jurnal Informatika: Jurnal Pengembangan IT (JPIT).
[8] Endang Anggiratih, Sri Siswanti, Saly Kurnia Octaviani, Arumsari, “Klasifikasi Penyakit Tanaman Padi Menggunakan Model Deep Learning Efficientnet B3 Dengan Transfer Learning”, Jurnal Ilmiah Sinus (JIS).
[9] Mohtar Khoiruddin, Apri Junaidi, Wahyu Andi Saputra, “Klasifikasi Penyakit Daun Padi Menggunakan Convolutional Neural Network”, Journal of Dinda.
[10] Ery Murniyasih, Luluk Suryani, “Penerapan Metode Learning Vector Quantization Untuk Identifikasi Penyakit Padi Berdasarkan Bentuk Bercak Daun”, Jurnal Elektro Luceat.
[11] Lulu Nafisa, Nur Ikhsanto, Sulistiyanto, “Penerapan Metode Forward Chaining Untuk Mengidentifikasi Hama Dan Penyakit Tanaman Padi”, Jurnal IRobot (International Research on Big-Data and Computer Technology).
[12] Afshin Gholamy, Vladik Kreinovich, Olga Kosheleva, “Why 70/30 or 80/20 Between Training and Testing Sets: A Pedagogical Explanation” UTEP-CS-18-09.
[13] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, Fellow, and Qing He, “A Comprehensive Survey on Transfer Learning”, arXiv.
[14] Institut Teknologi Nasional
[15] Natinai Jinsakul, Cheng-Fa Tsai, Chia-En Tsai, Pensee Wu, “Enhancement of Deep Learning in Image Classification Performance Using Xception with the Swish Activation Function for Colorectal Polyp Preliminary Screening”, E Mathematics.
[16] Rahmadhani Yusuf, Arif Akbarul Huda, “Deteksi Emosi Wajah Menggunakan Metode Backpropagation”, JACIS : Journal Automation Computer Information System.
[17] J. T. TOWNSEND, “Theoretical analysis of an alphabetic confusion matrix”,Psychonomic Journals.Inc. Austill, Texas
[18] Cyril Goutte, Eric Gaussier, “A Probabilistic Interpretation of Precision, Recall and”, ResearchGate.
[19] Reda Yacouby, Reda Yacouby, “Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models”, Computational Linguistics.
[20] Amalia Lugue, Alejandro Carrasco, Alejandro Martin, Ana de las Heras, “The impact of class imbalance performance metrics based on the binary confusion matrix,” Pattern Recognition.