STUDI AKTIVITAS DITIZON SEBAGAI PENGOMPLEKS ION Pb2+ MENGGUNAKAN METODE SPEKTROFOTOMETRI UV-Vis DAN SEMI EMPIRIS AM1

Main Article Content

Endah Sekar Palupi
Hermin Sulistyarti
Muhammad Ikhlas Abdjan
Chairil Anjasmara Robo Putra

Abstract

Environmental pollution is an influx of energy substances, living creatures, or other components into the environment so that the quality of the One type of pollutant is heavy metals lead (Pb). Pb of metal in irrigation found in the form of PbOH+, Pb2+, PBSO4, PbCO+, and PbHCO3. Lead can be analyzed using a UV-Vis spectrophotometer and test kit (colorimetry). The Test kit is created by adding a reagent to the sample so that there is a complex bond that occurs between the reagent and lead. The reagent often used in determining lead analysis is dithizone. Has been conducted to determine the activity of dithizone as a metal ion complex Pb+2 using spectrophotometry UV-Vis. Determination of the activity of dithizone in monomers and after forming complex indicates the concentration optimum of reagent dithizone in solvent 2-propanol is 60 ppm. Time measurement and optimum pH of Pb (II)-dithizone complex is 10 minutes in pH 4 for achieved complex stability. Geometry modeling and electronic transitions monomer Dithizone and Pb (II)-dithizone complex are performed in computing using semi-empirical AM1/SCF (ground state) and AM1/TD-SCF (excited state) methods. The results showed the total energy modeling dithizone: 0266 a.u and Pb (II)-dithizone: 1,125 a.u the ground state. The transition type in each molecule indicates the type of transition n ? ? ? Orbital molecules involved in the excitation of the electron dithizone are HOMO-6/39, HOMO-2/43, HOMO/45, and LUMO/46. Meanwhile, the Pb (II)-Ditizon complex has 3 orbitals are HOMO-4/85, HOMO/89, and LUMO/90 involved.

Keywords: Austin Model 1; Modeling; Pb (II)-Dithizone; UV-Vis Spectrophotometry

 

ABSTRAK

Pencemaran lingkungan merupakan masuknya zat, energi, makhluk hidup, atau komponen lain ke dalam lingkungan sehingga kualitas lingkungan turun hingga yang menyebabkan lingkungan menjadi kurang berfungsi lagi sesuai dengan peruntukkannya. Salah satu jenis polutan adalah logam berat Timbal (Pb). Logam Pb diperairan ditemukan dalam bentuk PbOH+, Pb2+, PbSO4, PbCO+, dan PbHCO3. Timbal dapat dianalisis langsung menggunakan spektrofotometer UV-Vis dan tes kit larutan (kolorimetri). Tes kit larutan dibuat dengan cara menambahkan suatu pereaksi pada sampel sehingga terbentuk adanya ikatan kompleks yang terjadi antara pereaksi dengan timbal. Pereaksi yang sering digunakan dalam penentuan analisis timbal yaitu ditizon. Telah dilakukan penentuan aktivitas ditizon sebagai pengompleks ion logam Pb+2 secara spektrofotometri UV-Vis. Hasil penentuan aktivitas ditizon dalam keadaan monomer dan sesudah membentuk kompleks menunjukan konsentrasi pereaski optimum ditizon, yaitu 60 ppm pada pelarut 2-propanol. Pengukuran waktu dan pH optimum pembentukan kompleks menunjukkan bahwa pada waktu 10 menit di pH 4 tercapainya kestabilan kompleks. Pemodelan geometri dan transisi elektronik monomer ditizon dan kompleks Pb(II)-ditizon dilakukan secara komputasi menggunakan metode semi empiris AM1/SCF (ground state) dan AM1/TD-SCF (excited state). Hasil menunjukan energi total pemodelan ditizon: 0.266 a.u dan Pb(II)-ditizon: 1.125 a.u pada ground state. Tipe transisi pada masing-masing molekul menunjukan tipe transisi n??? Orbital molekul yang terlibat dalam eksitasi elekteron ditizon, yaitu HOMO-6/39, HOMO-2/43, HOMO/45, dan LUMO/46. Sementara itu, kompleks Pb(II)-ditizon terdapat 3 orbital, yaitu HOMO-4/85, HOMO/89, dan LUMO/90 yang terlibat.

Article Details

Section
Articles

References

Balachandran, V., Janaki, A., & Nataraj, A. (2014). Theoretical investigations on molecular structure, vibrational spectra, HOMO, LUMO, NBO analysis and hyperpolarizability calculations of thiophene-2-carbohydrazide. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 118, 321–330. https://doi.org/10.1016/j.saa.2013.08.091

Bikadi, Z., & Hazai, E. (2009). Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of autodock. Journal of Cheminformatics, 1(1), 1–16. https://doi.org/10.1186/1758-2946-1-15

Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: a review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2

Frisch, M. J., et al, 2009. Gaussian 09. Retrieved from https://gaussian.com/citation/

Govindasamy, P., Gunasekaran, S., & Srinivasan, S. (2014). Molecular geometry, conformational, vibrational spectroscopic, molecular orbital and mulliken charge analysis of 2-acetoxybenzoic acid. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 130, 329–336. https://doi.org/10.1016/j.saa.2014.03.056

Irving, H. M. N. H. (1980). The analytical applications of dithizone. CRC Critical Reviews in Analytical Chemistry, 8(4), 321–366. https://doi.org/10.1080/10408348008542714

Isha, A., Yusof, N. A., Malik, M. A., & Hamdan, H. (2007). Simultaneous spectrophotometric determination of pb(ii) and cd(ii) using artificial neural networks. Training, 18(1), 1–10.

Jagiello, K., Sosnowska, A., Kar, S., Demkowicz, S., Da?ko, M., Leszczynski, J., Rachon, J., & Puzyn, T. (2017). Geometry optimization of steroid sulfatase inhibitors - the influence on the free binding energy with STS. Structural Chemistry, 28(4), 1017–1032. https://doi.org/10.1007/s11224-016-0903-x

Khan, H., Jamaluddin Ahmed, M., & Iqbal Bhanger, M. (2006). A simple spectrophotometric method for the determination of trace level lead in biological samples in the presence of aqueous micellar solutions. Spectroscopy, 20(5–6), 285–297. https://doi.org/10.1155/2006/269568

Khan, Z., Maqsood, Z. T., & Tanoli, A. (2016). Semi empirical insights into the electronic structure of an isatin derived bis schiff base. Pakistan Journal of Pharmaceutical Sciences, 29(6), 2059–2063.

Lima, N. B. D., Rocha, G. B., Freire, R. O., & Simas, A. M. (2019). RM1 semiempirical model: chemistry, pharmaceutical research, molecular biology and materials science. Journal of the Brazilian Chemical Society, 30(4), 683–716. https://doi.org/10.21577/0103-5053.20180239

Mahboub, R. (2014). Structural conformational study of eugenol derivatives using semiempirical methods. Advances in Chemistry, 2014, 1-5. https://doi.org/10.1155/2014/490358

Muralikrishna, I. V., & Manickam, V. (2017). Environmental management: science and engineering for industry. Amsterdam: Elsevier.

Ntoi, L. L. A., Buitendach, B. E., & Von Eschwege, K. G. (2017). Seven chromisms associated with dithizone. Journal of Physical Chemistry A, 121(48), 9243–9251. https://doi.org/10.1021/acs.jpca.7b09490

Papanikolaou, N. C., Hatzidaki, E. G., Belivanis, S., Tzanakakis, G. N., & Tsatsakis, A. M. (2005). Lead toxicity update: a brief review. Medical Science Monitor, 11(10), 329-336. Retrieved from https://medscimonit.com/download/index/idArt/430340

Rakhman, A. K., Zam Zam, Z., Umar, S., & Abdjan, M. I. (2019). Study of electronic transition of complex fe(iii), ni(ii), and zn(ii)-1.10-phenanthroline: modelling and uv-vis spectra Analysis. Journal of the Turkish Chemical Society Section A: Chemistry, December, 155–168. https://doi.org/10.18596/jotcsa.589848

Rajesh, P., Kandan, P., Sathish, S., Manikandan, A., Gunasekaran, S., Gnanasambandan, T., & Bala Abiramig, S. (2017). Vibrational spectroscopic, uv–vis, molecular structure and NBO analysis of rabeprazole. Journal of Molecular Structure, 1137, 277–291. https://doi.org/10.1016/j.molstruc.2017.01.072

Roto, R., Mellisani, B., Kuncaka, A., Mudasir, M., & Suratman, A. (2019). Colorimetric sensing of pb2+ ion by using ag nanoparticles in the presence of dithizone. Chemosensors, 7(3). https://doi.org/10.3390/CHEMOSENSORS7030028

Shiri, S., Delpisheh, A., Haeri, A., Poornajaf, A., Golzadeh, B., & Shiri, S. (2011). Determination of trace amounts of lead using the flotation-spectrophotometric method. Analytical Chemistry Insights, 6(1), 15–20. https://doi.org/10.4137/ACI.S5948

Stewart, J. J. P. (2013). Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, 19(1), 1–32. https://doi.org/10.1007/s00894-012-1667-x

Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011. https://doi.org/10.1155/2011/939161

Wani, A. L., Ara, A., & Usmani, J. A. (2015). Lead toxicity: a review. Interdisciplinary Toxicology, 8(2), 55–64. https://doi.org/10.1515/intox-2015-0009

White, W. E. (1936). Dithizone as an analytical reagent. Journal of Chemical Education, 2, 369–373. https://doi.org/10.1021/ed013p369