SISTEM PENDETEKSI KALIMAT UMPATAN DI MEDIA SOSIAL DENGAN MODEL NEURAL NETWORK

Sahrul Sahrul, Ahmad Fauzan Rahman, Muhammad Dzaky Normansyah, Ade Irawan

Abstract


Governments and social media providers put high effort to tackle massive negative contents in social media. Those contents are mostly containing religion, race, and inter-group issues, cyberbullying, and also body shamming, which usually appears together with offensive languages. It becomes difficult to overcome because of a large number of internet users in Indonesia. Hence, we need a system that can automatically detect the negative contents. This paper utilizes Neural Network (NN) models for not only classifying the words as (non)offensive words but also considering the structure of the sentence to get its context. There are two NN models analyzed in this paper: Artificial Neural Network (ANN) and Recurrent Neural Network (RNN). The computer simulation results show that the RNN has better performances than the ANN with the accuracy of training, validation, and testing 94%, 84%, and 84%, respectively.

 

Pemerintah dan penyedia layanan media sosial di Indonesia berusaha keras untuk mengatasi maraknya konten negatif di media sosial. Konten negatif yang sering ditemui diantaranya isu suku, agama, ras, dan antargolongan (SARA), cyberbullying, serta body shamming, yang biasanya muncul disertai kalimat-kalimat umpatan. Hal tersebut menjadi sulit untuk diatasi karena jumlah pengguna internet di Indonesia yang sangat besar, sehingga perlu adanya sebuah sistem yang dapat mendeteksinya secara otomatis. Penelitian ini mengusulkan sistem dengan model Neural Network untuk deteksi konten negatif di media sosial dengan cara mempertimbangkan konteks kalimat atau frasa, tidak hanya kata-per-kata. Ada dua model NN yang dianalisis di penelitian ini, yaitu Artificial Neural Network (ANN) dan Recurrent Neural Network (RNN). Model RNN menunjukkan performa yang lebih baik dibandingkan dengan model ANN dengan akurasi training, validasi, dan test masing-masing adalah 94%, 84%, dan 84%.

 

 


Keywords


Offensive language detection; social media; neural network

Full Text:

PDF

References


Riyanto, A. D., 2019, (Hootsuite) Indonesian Digital Report 2019, https://andi.link/hootsuite-we-are-social-indonesian-digital-report-2019/, diakses tanggal 6 Juli 2019.

Juniman, P. T., 2016, Revisi UU ITE Mulai Berlaku 28 November Esok, https://www.cnnindonesia.com/teknologi/20161126172041-185-175520/revisi-uuitemulai-berlaku-28-november-esok/, diakses tanggal 31 Desember 2018.

Breland, A., 2017, Social media fights back against fake news, https://thehill.com/policy/technology/335370-social-media-platforms-take-stepstoprotect-users-from-fake-news/, diakses tanggal 31 Desember 2018.

Dina, S., 2017, Banyak Konten Negatif, Twitter Minta Pengguna Pakai Fitur Report, https://kominfo.go.id/content/detail/11846/banyak-konten-negatif-twitter-mintapenggunapakai-fitur-report/0/sorotan_media/, diakses tanggal 31 Desember 2018.

Agrawal, H., 2018, Facebook Page Feature: Block Words and Profanity Blocklist, https://www.shoutmeloud.com/facebook-page-profanity-blocklist-spam-words.html, diakses tanggal 4 Januari 2019.

Carman, A., 2016, Instagram is now letting everyone filter abusive words out of their comments, https://www.theverge.com/2016/9/12/12887514/instagram-comments-abusivewordsfilter-section, diakses tanggal 4 Januari 2019.

Vandermissen, B., 2012, Automated detection of offensive language behavior on social media networking sites, Disertasi, Faculteit Ingenieurswetenschappen en Architectuur, Universiteit Gent, Gent, Belgia.

Sood, S. O., Antin, J., dan Churchill, E. F., 2012, Profanity Use in Online Communities, Proceeding of the SIGCHI Conference on Human Factor in Computing Systems, Austin, Texas, 5-10 Mei 2012.

Labreiro, G., dan Oliveira, E., 2014, What We Can Learn from Looking at Profanity, Proceeding on 11th International Conference PROPOR 2014, Sao Carlos, Brasil, 6-8 Oktober 2014.

Susanty, M., Sahrul, Rahman, A.F., Normansyah, M.D., Irawan, A., 2019, Offensive Language Detection using Artificial Neural Network, International Conference of Artificial Intelligence and Information Technology (ICAIIT), Yogyakarta, Indonesia, Maret 2019.

N. V. Chawla, K. W. Bowyer, L. O.Hall, W. P. Kegelmeyer, 2002, SMOTE: synthetic minority over-sampling technique, Journal of artificial intelligence research, 16, 321-357.

C. Francois, et al., 2015, Keras, https://keras.io/layers/embeddings/, diakses tanggal 15 September 2019.




DOI: http://dx.doi.org/10.24912/computatio.v3i2.6032

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.


Copyright of COMPUTATIO : JOURNAL OF COMPUTER SCIENCE AND INFORMATION SYSTEMS (P-ISSN : 2549-2810  E-ISSN : 2549-2829)


Indexed by:

      

 

Published by:

Fakultas Teknologi Informasi

Faculty of Information Technology, Universitas Tarumanagara
Gedung R Lantai 11
Jl. Let.Jend. S.Parman No. 1 Jakarta 11440

 

Web Analytics