PENERAPAN METODE DESAIN GESER BETON BERTULANG ALTERNATIF DENGAN ACI 318 DAN MCFT AASHTO
Main Article Content
Abstract
Currently, reinforced concrete shear designs in Indonesia are based on ACI 318M-14 and has not followed ACI 318M-19. As an alternative, modified compression field theory (MCFT) can also be used for reinforced concrete shear design. In this study, simple and continuous beams with uniform and concentrated loads will be analyzed using the ACI 318M-14, ACI 318M-19, and MCFT AASHTO LRFD Bridge Design Specification (BDS) 2020 shear design methods. Compared to the ACI 318M-14 method, the ACI 318M-19 method provides lower shear strength when minimum transverse reinforcement is not provided with a reduction of up to 35% and same shear strength for other cases. The AASHTO LRFD BDS 2020 gives higher design shear strength up to 157% ACI 318M shear strength despite using strength reduction factor of 0.75. The AASHTO LRFD BDS 2020 also shows an increase in the area of required flexural reinforcement due to shear forces which are unaccounted by ACI 318M up to 16% for simple beams and 37% for continuous beams. The analysis shows that MCFT can give more economical shear reinforcement design compared to ACI 318M method, making it suitable for application to reinforced concrete beams with relatively high shear forces.
Abstrak
Saat ini, desain geser beton bertulang di Indonesia masih didasarkan pada ACI 318M-14 dan belum mengikuti ACI 318M-19. Sebagai alternatif, modified compression field theory (MCFT) juga dapat digunakan untuk desain geser beton bertulang. Dalam penelitian ini, balok sederhana dan menerus dengan beban merata dan terpusat akan dianalisis dengan metode desain geser ACI 318M-14, ACI 318M-19, dan MCFT AASHTO LRFD Bridge Design Specification (BDS) 2020. Dibandingkan metode ACI 318M-14, metode ACI 318M-19 memberikan kekuatan geser yang lebih rendah ketika tulangan transversal minimum tidak disediakan dengan penurunan hingga 35% dan kekuatan geser yang untuk kasus lainnya. AASHTO LRFD BDS 2020 memberikan kekuatan geser desain yang lebih tinggi hingga 157% kekuatan geser ACI 318M meskipun menggunakan faktor reduksi kekuatan sebesar 0,75. AASHTO LRFD BDS 2020 juga menunjukkan peningkatan luas tulangan lentur perlu akibat gaya geser yang tidak diperhitungkan ACI 318M hingga 16% untuk balok sederhana dan 37% untuk balok menerus. Analisis menunjukkan MCFT dapat menghasilkan desain tulangan geser yang lebih ekonomis dibandingkan dengan metode ACI 318M sehingga cocok diterapkan pada balok beton bertulang yang memikul gaya geser relatif besar.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
This work is licensed under Jurnal Mitra Teknik Sipil (JMTS) Creative Commons Attribution-ShareAlike 4.0 International License.References
American Association of State Highway and Transportation Officials. (2020). AASHTO LRFD bridge design specifications (9th edition).
ACI Committee 318. (2014). Building code requirements for structural concrete (ACI 318M-14) and commentary (ACI 318RM-14).
ACI Committee 318. (2019). Building code requirements for structural concrete (ACI 318M-19) and commentary (ACI 318RM-19).
Al-Hamrani, A., Alnahhal, W., & Elahtem, A. (2021). Shear behavior of green concrete beams reinforced with basalt FRP bars and stirrups. Composite Structures, 277, Article No. 114619. https://doi.org/10.1016/j.compstruct.2021.114619
Arezoumandi, M., Drury, J., Volz, J. S., & Khayat, K. H. (2015). Effect of recycled concrete aggregate replacement level on shear strength of reinforced concrete beams. ACI Materials Journal, 112(4), 559–568. https://doi.org/10.14359/51687766
Badan Standardisasi Nasional. (2019). Persyaratan beton struktural untuk bangunan gedung dan penjelasan (SNI 2847:2019).
Bentz, E. C., Vecchio, F. J., & Collins, M. P. (2006). The simplified MCFT for calculating the shear strength of reinforced concrete elements. ACI Structural Journal, 103(4), 614–624.
Christianto, D., Makarim, C. A., & Tavio (2021). Effect of longitudinal steel reinforcement on shear capacity of SFRC beams without coarse aggregate. Technology Reports of Kansai University, 63(1), 6909–6917.
Christianto, D., Pranoto, W. A., Jusuf, A. H., Kho, D. A., & Tavio (2024). Formulasi faktor modifikasi kuat tarik belah untuk kuat geser beton tanpa agregat kasar. Jurnal Mitra Teknik Sipil, 7(2), 663–670. https://doi.org/10.24912/jmts.v7i2.28994
Darwin, D. & Dolan, C. W. (2021). Design of concrete structures (Edisi ke enam belas). McGraw-Hill Education.
Grandić, D., Šćulac, P., & Grandić, I. S. (2015). Shear resistance of reinforced concrete beams in dependence on concrete strength in compressive struts. Tehnički Vjesnik, 22(4), 925–934. https://doi.org/10.17559/TV-20140708125658
Jahanzaib & Sheikh, S. A. (2022). Theoretical model for calculating shear strength of fiber reinforced polymer-reinforced concrete beams. ACI Structural Journal, 121(5), 51–64. https://doi.org/10.14359/51740851
Kuchma, D. A., Wei, S., Sanders, D. H., Belarbi, A., & Novak, L. C. (2019). Development of the one-way shear design provisions of ACI 318-19 for reinforced concrete. ACI Structural Journal, 116(4), 285–295.
Lee, J. D. (2022). Assessment and simplification of American Association of State Highway and Transportation Officials sectional shear design using V-M interaction diagram. ACI Structural Journal, 120(1), 241–251. https://doi.org/10.14359/51736125
Mitchell, D., & Collins, M. P. (1974). Diagonal compression field theory-A rational model for structural concrete in pure torsion. ACI Journal Proceedings, 71(8), 396–408.
Peng, F., Xue, W., & Xue, W. (2020). Database evaluation of shear strength of slender fiber-reinforced polymer-reinforced concrete members. ACI Structural Journal, 117(3), 273–281. https://doi.org/10.14359/51723504
Sadeghian, V. & Vecchio, F. (2018, March 25-29). The modified compression field theory: Then and now. In Mitchell, D. & Belarbi, A. (Eds.), Shear in Structural Concrete (ACI SP-328-3): The Concrete Convention and Exposition (pp. 3.1–3.20). American Concrete Institute. https://doi.org/10.14359/51711147
Vecchio, F. J. (2000). Disturbed stress field model for reinforced concrete: Formulation. ASCE Journal of Structural Engineering, 126(8), 1070–1077.
Vecchio, F. J. & Collins, M. P. (1986). The modified compression-field theory for reinforced concrete elements subjected to shear. ACI Structural Journal, 83(2), 219–231.
Zhou, L. & Wan, S. (2022). Shear strength of ultra-high-performance concrete beams with small shear span-depth ratios. ACI Structural Journal, 119(6), 141–152. https://doi.org/10.14359/51736110