ANALISIS POTENSI ATAP BANGUNAN KAMPUS SEBAGAI LOKASI PENEMPATAN PANEL SURYA SEBAGAI SUMBER LISTRIK

Elieser Tarigan, Fitri Dwi Kartikasari
| Abstract views: 193 | views: 123

Abstract

Penelitian ini dilakukan dengan simulasi untuk mengetahui potensi pemanfaatan area atap bangunan kampus Universitas Surabaya untuk tempat pemasangan sistem Pembangkit Listrik Tenaga Surya (PLTS). Atap bangunan perpustakaan disimulaskan dan menjadi representasi perhitungan untuk atap bangunan yang lain. Sistem PLTS grid-connected dipakai dalam perhitungan energi listrik PLTS. Hasil penelitian menunjukkan bahwa tersedia area atap bangunan seluas 10.353 m2 yang dapat dimanfaatkan untuk instalasi panel surya. Total kapasitas listrik yang dihasilkan untuk area seluas itu adalah 2.030 kWp atau 2,03 MWp. Kapasitas sebanyak itu terbagi empat, yaitu 630 kWp dari atap yang menghadap Timur Laut, 535 kWp dari arah Barat Laut, 668 kWp pada arah Barat Daya dan 553 kWp dari arah Tenggara. 

Keywords

PLTS; atap bangunan; panel surya; energi listrik

Full Text:

PDF

References

Benatiallah, A. et al., 2007. A simulation model for sizing PV installations. Desalination, 209(1),

pp.97–101.

Bergamasco, L. & Asinari, P., 2011. Scalable methodology for the photovoltaic solar energy

potential assessment based on available roof surface area: Application to Piedmont Region

(Italy). Solar Energy, 85(5), pp.1041–1055.

Kandpal T.C. and Garg H.P., 2003. Financial evaluation of renewable energy technologies,

Ko, L. et al., 2015. Evaluation of the development potential of rooftop solar photovoltaic in

Taiwan. Renewable Energy, 76, pp.582–595.

Kuchler, S., 2013. Solar Energy Assesment Based on Weather Station Data for Direct Site

Monitoring in Indonesia. Dalarna University.

Marcel S. & Tomáš C., 2012. New Web-Based Service Offering Solar Radiation Data and PV

Simulation Tools for Europe, North Africa and Middle East. In Eurosun.

Ord????ez, J. et al., 2010. Analysis of the photovoltaic solar energy capacity of residential

rooftops in Andalusia (Spain). Renewable and Sustainable Energy Reviews, 14(7),

pp.2122–2130.

Orioli, A. & Di Gangi, A., 2014. Review of the energy and economic parameters involved in the

effectiveness of grid-connected PV systems installed in multi-storey buildings. Applied

Energy, 113, pp.955–969. Available at: http://dx.doi.org/10.1016/j.apenergy.2013.08.014.

Redweik, P., Catita, C. & Brito, M., 2013. Solar energy potential on roofs and facades in an

urban landscape. Solar Energy, 97, pp.332–341. SolarGis, SolarGis PVPlanner. Available

at: http://solargis.info/pvplanner [Accessed June 20, 2006].

Tarigan, E., Djuwari & Kartikasari, F.D., 2015. Techno-economic Simulation of a Gridconnected PV System Design as Specifically Applied to Residential in Surabaya,

Indonesia. Energy Procedia, 65, pp.90–99.

Vardimon, R., 2011. Assessment of the potential for distributed photovoltaic electricity

production in Israel. Renewable Energy, 36(2), pp.591–594.

Wiginton, L.K., Nguyen, H.T. & Pearce, J.M., 2010. Quantifying rooftop solar photovoltaic

potential for regional renewable energy policy. Computers, Environment and Urban

Systems, 34(4), pp.345–357.

Copyright (c) 2017 Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan

Refbacks

  • There are currently no refbacks.