PREDIKSI KINERJA MESIN DIESEL DENGAN BAHAN BAKAR BIODIESEL-SOLAR MENGGUNAKAN ARTIFICIAL NEURAL NETWORK

Husin Ibrahim, Abdi Hanra Sebayang, S. Dharma, A.S. Silitonga
| Abstract views: 474 | views: 289

Abstract

Tulisan ini meneliti kinerja mesin diesel satu silinder menggunakan campuran bahan bakar biodiesel randu dengan solar. Tes dilakukan dengan berbagai perbandingan biodiesel-diesel (B10, B20 dan B30). Sebuah model artificial neural network (ANN) yang didasarkan pada algoritma back-propagasi standar digunakan untuk memprediksi kinerja mesin menggunakan MATLAB. Untuk memperoleh data untuk pelatihan dan pengujian yang diusulkan ANN, kecepatan mesin yang berbeda (1400-2200 rpm) dipilih sebagai parameter masukan, sedangkan kinerja mesin (BSFC dan BTE) dipilih sebagai parameter keluaran untuk ANN pemodelan dari mesin diesel. Kinerja mesin (BSFC dan BTE) ANN telah divalidasi dengan membandingkan hasil prediksi dengan hasil eksperimen. Hasil penelitian menunjukkan bahwa koefisien korelasi BSFC dan BTE masing masing adalah 0,99249 dan 0,99457. Nilai MAPE (mean absolute persentase kesalahan) BSFC dan BTE adalah 0,57467 dan 0,33424 dan root mean square (RSME) nilai di bawah 5% oleh model, yang diterima. Studi ini menunjukkan bahwa pemodelan teknik sebagai pendekatan dalam energi alternatif dapat memberikan peningkatan keuntungan dari kehandalan dalam prediksi kinerja mesin pembakaran dalam. 

Keywords

biodiesel randu; mesin diesel; kinerja mesin; Artificial neural network

Full Text:

PDF

References

Atabani, A. E., Silitonga, A. S., Badruddin, I. A., Mahlia, T.I., Masjuki, H., & Mekhilef, S.

(2012). A comprehensive review on biodiesel as an alternative energy resource and its

characteristics. Renewable and sustainable energy reviews, 16(4), 2070-2093.

Ayodele, B. V., & Cheng, C. K. (2015). Modelling and optimization of syngas production from

methane dry reforming over ceria-supported cobalt catalyst using artificial neural networks

and Box–Behnken design. Journal of Industrial and Engineering Chemistry, 32, 246-258.

Buyukkaya, E. (2010). Effects of biodiesel on a DI diesel engine performance, emission and

combustion characteristics. Fuel, 89(10), 3099-3105.

Dharma, S., Ong, H. C., Masjuki, H.H., Sebayang, A.H., & Silitonga, A.S. (2016). An overview

of engine durability and compatibility using biodiesel–bioethanol–diesel blends in

compression-ignition engines. Energy Conversion and Management, 128, 66-81.

Ismail, H. M., Ng, H. K., Queck, C. W., & Gan, S. (2012). Artificial neural networks modelling

of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends.

Applied Energy, 92, 769-777.

Javed, S., Murthy, Y. S., Baig, R. U., & Rao, D. P. (2015). Development of ANN model for

prediction of performance and emission characteristics of hydrogen dual fueled diesel

engine with Jatropha Methyl Ester biodiesel blends. Journal of Natural Gas Science and

Engineering, 26, 549-557.

Kamairudin, N., Gani, S. S. A., Masoumi, H. R. F., Basri, M., Hashim, P., Mokhtar, N. M., &

Lane, M. E. (2015). Modeling of a natural lipstick formulation using an artificial neural

network. RSC Advances, 5(84), 68632-68638.

Kiani, M. K. D., Ghobadian, B., Tavakoli, T., Nikbakht, A., & Najafi, G. (2010). Application of

artificial neural networks for the prediction of performance and exhaust emissions in SI

engine using ethanol-gasoline blends. Energy, 35(1), 65-69.

Kumar, S., Pai, P. S., Rao, B. S., & Vijay, G. (2016). Prediction of performance and emission

characteristics in a biodiesel engine using WCO ester: a comparative study of neural

networks. Soft Computing, 20(7), 2665-2676.

Najafi, G., Ghobadian, B., Tavakoli, T., Buttsworth, D., Yusaf, T., & Faizollahnejad, M. (2009).

Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline

fuels using artificial neural network. Applied Energy, 86(5), 630-639.

Ong, H. C., Masjuki, H.H., Mahlia, T.I., Silitonga, A.S., Chong, W., & Yusaf, T. (2014). Engine

performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum

inophyllum biodiesel in a CI diesel engine. Energy, 69, 427-445.

Pelletier, F., Masson, C., & Tahan, A. (2016). Wind turbine power curve modelling using

artificial neural network. Renewable Energy, 89, 207-214.

Sebayang, A.H., Masjuki, H.H., Ong, H. C., Dharma, S., Silitonga, A.S., Mahlia, T.I., & Aditiya,

H.B. (2016). A perspective on bioethanol production from biomass as alternative fuel for

spark ignition engine. RSC Advances, 6(18), 14964-14992.

Silitonga, A.S., Masjuki, H.H., Ong, H. C., How, H., Kusumo, F., Teoh, Y., & Mahlia, T.I.

(2015). Engine Performance, Emission and Combustion in Common Rail Turbocharged

Diesel Engine from Jatropha Curcas Using Artificial Neural Network. Technical Paper,

-0710.

Siswantoro, J., Prabuwono, A. S., Abdullah, A., & Idrus, B. (2016). A linear model based on

Kalman filter for improving neural network classification performance. Expert Systems

with Applications, 49, 112-122.

Teoh, Y., Masjuki, H.H., Kalam, M., Amalina, M., & How, H. (2014). Effects of Jatropha

biodiesel on the performance, emissions, and combustion of a converted common-rail

diesel engine. RSC Advances, 4(92), 50739-50751.

Teoh, Y., Masjuki, H.H., Noor, I., Ali, B. S., Kalam, M., & How, H. (2015). Evaluation of a

novel biofuel from unwanted waste and its impact on engine performance, emissions, and

combustion characteristics in a diesel engine. RSC Advances, 5(53), 42438-42447.

Yadav, A. K., Khan, M. E., Dubey, A. M., & Pal, A. (2016). Performance and emission

characteristics of a transportation diesel engine operated with non-edible vegetable oils

biodiesel. Case Studies in Thermal Engineering, 8, 236-244

Copyright (c) 2017 Jurnal Muara Sains, Teknologi, Kedokteran dan Ilmu Kesehatan

Refbacks

  • There are currently no refbacks.